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Letter from the Editor-in-Chief

TCDE Election

As you can see from the short letter from the TCDE nominating committee (on page 2), Erich Neuhold has been
elected as chair of the IEEE Techincal Committee on Data Engineering. His term will start in January, 2002.
Congratulations Erich on your new position! Erich has been serving as TCDE vice chair, and is the current chair
of the ICDE Steering Committee.

I also want to take this opportunity to thank Betty Salzberg, our current TCDE chair, whose term ends
this month. Betty has done an outstanding job of re-invigorating the technical committee. We have a TCDE
web site, we have a regular meeting at our TCDE sponsored conference ICDE. We have also had meetings to
discuss issues related to TCDE finances, conference sponsorships, and member services. During Betty’s term,
two significant decisions were made relative to our publications. First, the Bulletin is now an entirely electronic
publication. This is important as it means that our expenses drop dramatically. (The Bulletin was the largest
item by far in the TCDE budget.) Second, the TCDE was then able to sponsor the distribution of the SIGMOD
Anthology to its members (who were not also SIGMOD members). These were major accomplishments of
Betty’s leadership over the past four years.

The Current Issue

The database technical field had its start in business data processing. Databases have, over time, gotten faster
and faster at handling larger and larger volumes of business transactions. Along with these improvements in
performance metrics, databases have evolved into search engines that are increasing capable of dealing with
complex, decision support style queries. This gave rise to the OLAP community, data warehouses, and data
mining. Increased functionality has also been an on-going theme in database evolution. And we have seen
databases applied to time-series data, geographical data, etc.

One of the truly challenging areas to which database have been applied is the area of text search, and its
integration with move conventional structured queries. Information retrieval (IR) is a field that is even older
than databases. But IR did not attempt this integration. IR itself is a hard problem. Its integration with database
search adds additional complication. However, progress is being made. And database vendors sense that there is
a real market for this unified search capability. Hence, the current issue on ”Text and Databases” is very timely.

Luis Gravano, the December issue editor, has himself worked in this area. He has used his knowledge of the
area in bringing together a very interesting sample of the work going on in unifying text and database search.
I particularly appreciate that Luis has successfully coaxed database vendors to contribute to this issue, thus
keeping our field apprised of the commercial state-of-the-art. I want to thank Luis for his very successful effort
in bringing us all this report on where we stand with text and database search.

David Lomet
Microsoft Corporation
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New TCDE Chair for 2002-2003

The election for Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) for
the period January 2002 to December 2003 has concluded. We are pleased to announce that Professor Erich
Neuhold, Darmstadt University of Technology (neuhold@darmstadt.gmd.de) has been elected Chair of the
TCDE. Erich’s biography and a position statement can be found in the September 2001 issue of the DE Bulletin.

Paul Larson, Masaru Kitsuregawa, Betty Salzberg
Nominating Committee

Letter from the Special Issue Editor

Text is everywhere: in web pages, in unstructured and semistructured documents, and in structured objects. This
issue of the Bulletin addresses a few of the diverse challenges associated with handling text effectively. The
first four papers in the issue, by Albert Maier and David Simmen (IBM), James Hamilton and Tapas Nayak
(Microsoft), Paul Dixon (Oracle), and Prabhakar Raghavan (Verity), provide a revealing industry perspective on
text management. Specifically, these four papers describe how IBM’s DB2, Microsoft’s SQL Server, Oracle,
and Verity’s K2 Enterprise handle textual data, focusing particularly on the integration of text and structured
data. The next two papers are on approximate string matching, a critical problem when processing text-related
queries. For example, textual data may be riddled with typographical errors or present many ways of referring
to the same person or organization, in absence of universally adopted conventions or formats. The paper by
Gonzalo Navarro et al. is a survey of specialized index structures for approximate string matching. The paper by
Panagiotis Ipeirotis et al. discusses how to process approximate string join and selection queries over a standard,
unmodified relational database management system. At a higher level of abstraction, the information retrieval
field has studied for decades how to answer queries effectively over large collections of (flat) text documents.
The paper by Amit Singhal (Google) is a survey of the latest developments in information retrieval. This paper
includes a detailed description of a state-of-the-art document scoring scheme, which should help researchers
design experimental evaluations in this general topic. Finally, the last paper in the issue, by Sriram Raghavan
and Héctor Garc´ıa-Molina (Stanford U.), surveys work on the integration of collections of unstructured text
documents and databases of semistructured or structured data.

This issue of the Bulletin touches on just a few of the many topics that are relevant to the management of
textual data. I have intentionally shifted the focus of the issue away from web-specific aspects of the problem,
which were at the core of the September 2000 issue of the Bulletin on “Next-Generation Web Search.” I hope
you will find that the eight papers in the current issue of the Bulletin provide a stimulating peek at the research
and development that is happening in both the industrial and the academic worlds.

Luis Gravano
Columbia University
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DB2 Optimization in Support of Full Text Search

Albert Maier
IBM Boeblingen Lab
amaier@de.ibm.com

David Simmen
IBM Silicon Valley Lab
simmen@us.ibm.com

1 Introduction

Over the last several years, demand for integrating full text and relational search has increased dramatically. For
example, a content management system might seek the most relevant articles written during a certain period,
where the abstract contains the words ‘Bush’ in the same sentence as ‘recession’. Neither a traditional text
information retrieval (IR) system nor a traditional RDBMS could handle this type of query efficiently.

Not surprisingly, federated solutions emerged where an application layer decomposed queries into relational
and text search components and joined the results. IBM’s Digital Library exploited DB2 and IBM’s powerful
linguistic text search engine (TSE) in this way. One of the inherent drawbacks of this architecture is the cost of
moving partial results into the application layer and joining them there.

DB2’s Text Extender (TE) was the first attempt by a major RDBMS vendor to tackle this problem. TE
integrates TSE into DB2. It supports creation of text indexes on DB2 tables. These text indexes use keys stored
in the table to relate index entries back to individual records. Triggers are used to keep the text and text indexes
in sync. TE exploited DB2’s SQL extensibility features to effectively push query decomposition and join into
the RDBMS. Following is an example of a typical TE query that performs the “recession” search described
above:

SELECT a.isbn, a.year, b.score
FROM articles a, textsearch(‘articles’,‘abstract’,’“Bush” in same sentence as “recession”’) b
WHERE a.year>= 2000 AND a.isbn = b.key AND b.score>= 0.9
ORDER BY 3

The table functiontext searchcalls TSE to evaluate the text search condition, returning the keys of all matching
articles together with a relevance score. This approach allows text and relational results to be joined using the
sophisticated join methods of the RDBMS; however, optimal decomposition of the query, e.g., choice of access
order, join methods, etc. requires information regarding the cost and cardinality of the text search be made
available to the query optimizer. Note that performance of the query would also benefit if DB2 could make
TSE aware that the query was interested in only the most relevant articles having a certain minimum score.
So in addition to the cost estimation issues that effected performance, there were lost opportunities to limit
cross-source data flow by pushing query processing (e.g., predicate application) to TSE.

These federated query optimization issues have been investigated extensively since TE was released. Of
particular relevance here is the Garlic work [1], which described a general framework for performing cost-based

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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optimization of queries across heterogenous data sources. We exploited basic ideas from this work in order to
solve many of the TE optimization issues described above. In particular, like Garlic, we did not wire knowledge
about the capabilities of the text search engine into the DB2 optimizer. Instead, we added an API that allows
the text search engine to exchange costing and planning information with the DB2 optimizer. In addition, we
also added a set of built-in DB2 functions and related query rewrite support to allow for the most user-friendly
formulation of SQL queries with full text search.

The remainder of this paper focuses on these features, which were added to DB2 Universal Database Version
7.2 (DB2 henceforth) in support of IBM’s DB2 Text Information Extender (TIE) [2], the successor to TE. In
addition to adding support for the exchange of information with the DB2 optimizer, TIE exploits IBM’s next
generation text search engine GT9, the successor to TSE. GT9 technology is also used in many other IBM
products such as Lotus Notes, Enterprise Information Portal, and Intelligent Miner for Text.

2 DB2 Optimization in Support of Full Text Search

The DB2 SQL compiler is a direct descendent of Starburst [3] and generates a query execution plan similarly via
parsing, semantics, query rewrite [4], and cost-based optimization phases. The following subsections describe
changes made to the compiler to support full text search.

2.1 Semantics

DB2 provides 3 scalar functions in support of full text search. Each operates on a column and text search string.

� CONTAINS returns 1 if the text search string matches the first argument, and 0 otherwise.

� SCORE returns a float value between 0 and 1 indicating how well the text search condition was matched.

� NUMBEROFMATCHES returns an integer indicating how often it matched.

These functions serve only a semantic role. There is no supporting DB2 implementation. As will be dis-
cussed in the next subsection, a reference to these functions triggers a transformation to an equivalent query
involving a table function supplied by TIE as a gateway to GT9.

This table function, which we calltext searchfor this exposition, takes as input meta-data identifying the text
index that will support the text search, a text search string, a plan for evaluating additional parts of the query, and
any input values required to evaluate the plan. The function returns the primary keys of all documents matching
the text search condition as well as the columnscontains, score, andnumberofmatches, which supply the results
for the respective DB2 scalar functions described above.

2.2 Query Rewrite

A scalar function interface provides the most user-friendly way to integrate text search, but a naive implemen-
tation could not exploit text indexes and would be very inefficient. The query rewrite component handles the
burden of resolving TIE meta-data and composing joins with thetext searchtable function. To illustrate the ba-
sic idea, consider the following query that determines how relevant 2001 articles are with respect to the subject
“G.W. Bush”.

SELECT title, SCORE (a.abstract, ’”G.W. Bush”’ )
FROM articles a
WHERE a.year = 2001

Upon encountering thescorefunction reference, DB2 retrieves TIE meta-data for theabstractcolumn, resolves
the primary key of thearticles table, and transforms the query into the following:
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SELECT a.title, COALESCE(b.score, 0)
FROM articles a LEFT JOIN textsearch (‘abstractmeta-data’, ’”G.W. Bush”’, ....) b ON a.isbn = b.key
WHERE a.year = 2001

A left join operator is required to assure that 2001 articles not matching the text search condition are preserved.
The coalesce function provides these rows with a relevance score of 0.

As illustrated with the following example, the rewrite logic assures that multiple scalar functions are mapped
to the same table function output when possible:

SELECT title, SCORE (a.abstract, ’”G.W. Bush”’ )
FROM articles a
WHERE a.year = 2001 AND CONTAINS (a.abstract, ’”G.W. Bush”’) = 1

The rewrite logic first processes thescorefunction reference as in the previous example. It then encounters the
reference to thecontainsfunction, and after comparing its corresponding index meta-data and text search strings
with those of the existing table function, determines it can simply be mapped to the output of that function as
follows:

SELECT a.title, COALESCE(b.score, 0)
FROM articles a LEFT JOIN textsearch (‘abstractmeta-data’, ’”G.W. Bush”’, .....) b ON a.isbn = b.key
WHERE a.year = 2001 AND b.contains = 1

No COALESCE function is needed in this case since the optimizer’s theorem-prover can determine that the
conjunctCOALESCE(b.contains, 0)=1rejects rows when instantiated with NULL. This is an important point,
as it allows the outer join operator to be converted to an inner join operator later, by an existing rewrite rule.

2.3 Cost-based Optimization

Each time the DB2 optimizer evaluates an alternative plan for accessing thetext searchtable function, it calls
the TIE optimizer to exchange costing and planning information. During each exchange, the DB2 optimizer
presents the TIE optimizer with a set ofrequirementsit would like TIE to satisfy. Examples of requirements
includes the text search condition, predicates on output columns, output order, etc.

The TIE optimizer returns aremote planfor satisfying one or more of the requirements. The remote plan is
treated as a black box by the DB2 optimizer. It is simply passed back to TIE when thetext searchtable function
is opened for execution. A set ofpropertiesis associated with the plan. The properties describe which of the
requirements the remote plan will satisfy (it will at least satisfy the text search condition), the cost of satisfying
those requirements, and the cardinality of the result. The DB2 optimizer will add logic to the overall plan to
compensate for any requirements not satisfied by TIE.

The figure below illustrates the interaction between the DB2 and the TIE optimizers. Two alternative evalu-
ation plans for the query from Section 1 are shown. In plan 1, thetext searchtable function is accessed on the
outer of a nested-loops join operation. In plan 2 the roles are reversed. The figure illustrates the sets of require-
ments passed to the TIE optimizer in each case. In both cases, the DB2 optimizer passes the text search condition
and the predicatescore>= .9 as requirements. The DB2 optimizer also includes the order requirement with the
plan 1 requirements, since rows produced in score order would propagate through the join operation, satisfying
the ORDER BY requirement. Remote plan 1 is passed back to TIE (argument 3) at execution time if plan 1 is
cheapest overall. The DB2 optimizer forgoes adding the ordering requirement to the plan 2 requirements, but
instead adds the join predicatea.isbn = b.key. If the join predicate is accepted by TIE, and plan 2 is cheapest
overall, thetext searchtable function will be evaluated for each outer row. In this case, DB2 will pass outer row
values needed to evaluate the join predicate (argument 4).
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3 Related and Future Work

Integration of text search into an RDBMS is often done via some type of index extension mechanism [5], [6].
These approaches fail to exploit the complex query evaluation capabilities of advanced text search engines. For
example, GT9 can evaluate predicates, produce ordered results, limit those results to only the firstn rows, and
so on. Modeling the search engine as a remote data source that participates in query optimization allowed us
to exploit these capabilities. In the future, we would like to explore the idea of generalizing and exposing the
costing and planning interface so that other text search engines can interact with DB2 in this way.

TIE is well-suited for content management applications that typically issue complex queries combining text
and relational search conditions. These queries usually require complete answer sets. In contrast, e-commerce
applications issue simpler queries with either no relational search conditions, or with only very simple ones.
Moreover, these queries require only a few relevant results. IBM offers a specialized solution for e-commerce
scenarios, called Net Search Extender (NSE). NSE exploits main memory techniques to achieve extremely high
performance and scalability. TIE and NSE will be integrated into a single product in the future.

4 Conclusion

This paper describes DB2 optimization support for queries integrating relational and full text search, the key
aspect of which is a costing and planning interface that allows our text search engine to fully participate in
determination of the optimal query execution plan. The paper also describes how rewriting improves usability
and performance. Special thanks to Laura Haas for reviewing an earlier draft of the paper.
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Microsoft SQL Server Full-Text Search

James R. Hamilton
Microsoft Corporation

JamesRH@microsoft.com

Tapas K. Nayak
Microsoft Corporation

TapasNay@microsoft.com

1 Introduction

Over the last decade, the focus of the commercial database management community has been primarily on
structured data and the industry as a whole has been fairly effective at addressing the needs of these structured
storage applications. However, only a small fraction of the data stored and managed each year is fully structured
while the vast preponderance of stored data is either wholly unstructured or only semi-structured in the form of
documents, web-pages, spreadsheets, email, and other weakly structured formats.

This work investigates the features and capabilities of the full text search access method in Microsoft SQL
Server 2000 and the follow-on release of this product and how these search capabilities are integrated into the
query language. We will first outline the architecture for the full text search support, then describe the full text
query features in more detail, and finally show examples of how this support allows single SQL queries over
structured, unstructured, and semi-structured data.

2 SQL Server Search Architecture

The SQL Server full text search feature leverages the same underlying full text search access method and infras-
tructure employed in other Microsoft products, including Exchange, Sharepoint Portal Server, and the Indexing
Service that supports full text search over filesystem hosted data. This approach has several advantages, the
most significant of which are 1) common full text search semantics across data stored in relational tables, the
mail system, web hosted data, and filesystem resident data, and 2) leverage of full text search access method and
infrastructure investments across many complementary products.

Indexed text in SQL Server can range from a simple character string data to documents of many types,
including Word, Powerpoint, PDF, Excel, HTML, and XML. The document filter support is a public interface,
allowing for custom document formats to be integrated into SQL Server full text search. The architecture is
composed of five modules hosted in three address spaces (see Figure 1): 1) content reader, 2) filter daemon, 3)
word breaker, 4) indexer, and 5) query processor.

Full text indexed data stored in SQL Server tables is scanned by the content reader which assemble data and
related metadata packets. These packets flow to the main search engine, which triggers the search engine filter
daemon process to consume the data read by the content reader. Filter daemons are modules managed by MS
Search but outside of the MS Search address space. Since the search architecture is extensible and filters may
be sourced from the shipped product, ISV supplied or ISV produced and there is a risk that a filter bug or a

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: Architecture of SQL Server Full-Text Search.

combination of a poorly formed document and a filter bug could allow the filter to either fail or not terminate.
Running the filters and word breakers in an independent process allows the system to be robust in the presence
of these potential failure modes. If some instance of daemon fails or runs rogue, MS Search process restarts a
new instance.

Filters are invoked by the daemon based on the type of the content. Filters parse the content and emit chunks
of processed text. A chunk is a contiguous portion of text along with some relevant information about the text
segment like the language-id of the text, attribute information if any, etc. Filters emit chunks separately for any
properties in the content. Properties can be items such as title or author and are specific to the content types.

Word breakers break these chunks into keywords. Word breakers are modules that are human language-
aware. SQL Server search installs word breakers for various languages, including but not limited to English
(USA and UK), Japanese, German, French, Korean, Simplified and Traditional Chinese, Spanish, Thai, Dutch,
Italian, and Swedish. The word breakers are also hosted by the filter daemons and they emit keywords, alternate
keywords, and location of the keyword in the text. These keywords and related metadata are transferred to
the MS Search process via a high speed shared memory protocol that feeds the data into the Indexer. The
indexer builds an inverted keyword list with a batch consisting of all the keywords from one or more content
items. Once MS Search persists this inverted list to disk, it sends notification back to the SQL Server process
confirming success. This protocol ensures that, although documents are not synchronously indexed, documents
will not be lost in the event of process or server failures and it allows the indexing process to be restartable based
upon metadata maintained by the SQL Server kernel.

As with all text indexing systems we have worked upon, the indexes are stored in a highly compressed form
that increases storage efficiency at the risk of driving up the cost of update. To obtain this storage size reduction
without substantially increasing update cost, a stack of indexes are maintained. New documents are built into
a small index, which is periodically batch merged into a larger index that, in turn, is periodically merged into
the base index. This stack of indexes may be greater than three deep but the principle remains the same and it
is an engineering approach that allows the use of an aggressively compressed index form without driving up the
insertion costs dramatically. When searching for a keyword, all indexes in this stack need to be searched so there
is some advantage in keeping the number of indexes to a small number. During insertion and merge operations,
distribution and frequency statistics are maintained for internal query processing use and for ranking purposes.

This whole cycle sets up a pipeline involving the SQL Server kernel, the MS Search Engine and the filter
daemons, combination of which is the key to reliability and performance of SQL Server full text indexing

8



process.

3 SQL Server Full-text Search Query Features

The full text indexes supported by SQL Server are created using the familiarCREATE INDEX SQL DDL
statement. These indexes are fully supported by SQL Server standard utilities, such as backup and restore,
and other administrative operations, such as database attach/detach work unchanged in the presence of full text
search indexes. Other enterprise-level features, including shared disk cluster failover, are fully supported in the
presence of full text indexes. Indexes are created and maintained online using one of three options:1) Full
Crawl scans the full table and builds or rebuilds a complete full text index on the indexed columns of the table.
This operation proceeds online with utility progress reporting.2) Incremental Crawluses a timestamp column
on the indexed table to track changes to the indexed content since the last re-index.3) Change Trackingis used
to maintain near real time currency between the full text index and the underlying text data. The SQL Server
Query Processor directly tracks changes to the indexed data and this data is applied in near real time to the full
text index.

The full text search support is exposed in SQL using the following constructs:

1. Contains Predicate:Contains(collist, ’<search condition>’) . A contains predicate is true if any of the
indicated columns in the listcol list contains terms that satisfy the given search condition. A search con-
dition can be a keyword, a keyword prefix, a proximity term, or some combination of these. For example
a predicateContains(description, (’word* or Excel or “Microsoft Access”’))will match all entries with
description containing words like ‘word’, ‘wordings’, ‘Excel’ or the phrase ‘Microsoft Access’.

2. Freetext Predicate: Freetext predicates match on text containing terms that are linguistically similar
(stemming) to the terms in the search condition. ThusFreetext(description, ’run in the rain’)will match
all the items that contain in its description column text with terms likerun, running, rain, rains, etc.

3. ContainsTable and FreetextTable:ContainsTable and FreetextTable are table-valued functions that lo-
cate entries using a search condition as above, and return the matching items along with a rank value for
each item computed based on term statistics in the item as well as in the whole corpus.

The search condition for any of the predicates described above can include:

1. Keyword, phrase, prefix: E.g.,Excel, Microsoft Word, word*.

2. Linguistic generation of relevant keywords: Thesaurus and Inflectional Forms:Contains(*, ’FORM-
SOF(INFLECTIONAL, distributed) AND FORMSOF(THESAURUS,databases)’)will find documents con-
taining inflectional forms ofdistributedand all words meaning the same asdatabases(thesaurus support).

3. Weighted Terms: Query terms can be assigned relative weight to impact the rank of matching documents.
In the following, thespreadsearch term is given twice the weight of thesaucessearch term:

SELECT a.CategoryName, a.Description, b.rank
FROM Categories a, ContainsTable( Categories, description,

’ISABOUT(spread weight (.8), sauces weight(.4),
relishes weight(.2))’) b

WHERE a.categoryId = b.[key]

4. Proximity: One can specify queries using proximity (NEAR) between terms in a matching document, e.g.,
‘distributed NEAR databases’ matches items in which the termdistributedappears close todatabases.

5. Composition: Terms A and B can be composed as A AND B, A OR B and A AND NOT B.
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4 Examples of Full-text Query Scenarios

Example 1. We have a tableDocuments(DocId, Title, Author, Content)of documents published in a site. This
following query finds all documents authored by Linda Chapman onchild developmentand insomniawhich
include the termchild close to the termdevelopmentin Title. The result is presented in descending order of
rank.

SELECT a.Title,b.rank
FROM Documents a,

FreetextTable(Documents, Content, ’"child development" AND insomnia’) b
WHERE a.DocId=b.[key] and a.Author=’Linda Chapman’ and

Contains(a.Title, ’child NEAR development’)
ORDER BY b.rank DESC

Example 2 (Heterogeneous sources).Data is stored as emails (data sourceexchange), locally-authored doc-
uments (data sourcemonarch), documents published in SQL Server (schema same as above). The following
query gets all documents related tomarketingandcosmeticsfrom all three stores.

--Get qualifying email docs
SELECT DisplayName, hRef FROM openquery(exchange,

’SELECT "DAV:displayname" as DisplayName, "DAV:href" as hRef
FROM "manager\Inbox"
WHERE contains(*, ’’marketing AND cosmetics’’)’)

UNION ALL --Get qualifying filesystem data
SELECT filename, vpath FROM OpenQuery(Monarch,

’SELECT vpath, Filename
FROM SCOPE(’’deep traversal of "c:\My Documents"’’)
WHERE contains(’’marketing AND cosmetics’’)’)

UNION ALL --Get qualifying SQL Server data
SELECT Title, ’SQLServer:Documents:’+cast(DocId as varchar(9)) as href
FROM Documents
WHERE contains(*,’marketing AND cosmetics’)

5 Conclusions

In this paper we motivate the integration of a native full text search access method into the Microsoft SQL Server
product, describe the architecture of the access method and motivate some of the trade-offs and advantages of
the engineering approach taken. We explore the features and functions of the full text search feature and provide
example SQL queries showing query integration over structured, semi-structured, and unstructured data.

For further SQL Server 2000 full text search usage and feature details one may look at Inside Microsoft
SQL Server [1] or SQL Server 2000 Books online [2]. On the implementation side, we are just completing a
major architectural overhaul of the indexing engine and its integration with SQL Server in the next release of
the product and this paper is the first description of this work.
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Abstract

This paper covers the basics of text search within the Oracle RDBMS. Emphasis is on demonstrating the
simplicity and power of the SQL CONTAINS() text query language.

1 Introduction

For the average user, searching through documents in a file system means using “grep” - this is a linear scan
using regular expressions. At a certain size of collection an index becomes necessary. For text this will typically
be an “inverted list” index, although other text indexes may be used for specialized applications. An inverted
list looks the same wherever the source documents may reside; in a database, on a file system, or on the Web. In
Oracle, text indexes are stored natively as database tables.

The primary interface to the relational database is SQL (Structured Query Language), which most peo-
ple know from handling structured data (e.g., numbers, dates, short text strings, etc.), and the interface to the
text-retrieval component is no exception. The primary interface to text is the CONTAINS() function, but CON-
TAINS() works within the greater framework of the SQL language.

2 Defining the Repository

In a file system, a file has disk storage and metadata, whereas in a database a document consists of a database cell
(or a set of cells), where a database cell occurs in the individual row and column of a table. A file will generally
have an associated system date and other meta information will appear as a file name and security permissions.
In the database, metadata is not predefined, but can include system date and arbitrary associated column data.

Database storage is defined in terms of database tables and types:

Example 1: CREATE TABLE recipes (name CHAR(30), directions VARCHAR2(400));

This is nearly the simplest possible schema definition (a 30-character-width text field and a 400-character-
maximum variable-width field). It could be augmented with other types; structured types such as the date of
insertion, the time to create the recipe, cross references, id number, and so on. Text itself can be stored in
multiple formats - in a LOB (large object) or as a Binary LOB if it is in a non-text format, such as a word-
processing file, or is in a character set other than that of the host database. Other supported datatypes include
Web (URL), external file, and procedural (user-defined).

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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3 Getting Documents In

The SQL INSERT statement is the most accessible and familiar interface for database data input.

Example 2: INSERT INTO recipes VALUES ( ‘omelet’, ‘Finely chop onion, put 1 tbsp. butter in skillet over
high flame, mix two eggs, salt and pepper with fork in a bowl, add to skillet, shake and run fork through eggs,
when eggs are set, add cheese and onion, fold in half, serve.’);

INSERT is primarily designed for shorter text fragments. Other methods of inserting documents are the
Oracle Call Interface (C language), SQL*Loader (a stand-alone specialized data/document loader), and the
Oracle Internet File System, which supports file system protocols, as well as FTP and HTTP.

4 Finding Information

Creating a full-text index is straightforward:

Example 3: CREATE INDEX recipeidx ON recipes(directions) INDEXTYPE IS CONTEXT;

This create index statement works like a “normal” B-tree index. It creates a set of tables that comprise an
inverted list index on the text column. The inverted index is effectively the same as the back-of-book index in a
paper book; it matches a token or phrase and its locations to speed up search with a look-up rather than a scan.

To query the text column, one uses CONTAINS:

Example 4: SELECT name FROM recipes WHERE CONTAINS(directions, ‘cheese’)>0;

Here the SELECT acts upon the full-text index, to return all entries that contain the token ‘cheese’ within the
‘directions’ field. The CONTAINS function can be included in SQL of arbitrary complexity, in conjunction with
structured conditions, join conditions, views and sub-selects; it is a row source native to the Oracle RDBMS.
When select statements include both full-text and structured components, the optimizer will choose the correct
execution plan based on the cost and selectivity of all predicates. It is possible to influence the plan generation
for text using optimizer “hints”, the same as for structured conditions.

5 Updating the Collection

To add to the indexed document collection, we can insert new documents:

Example 5: INSERT INTO recipes VALUES( ‘grilled cheese sandwich’, ‘oil skillet and heat over medium
flame, put one slice of cheddar cheese and one of cheese (jack) between bread slices, fry on each side until
brown’);

Unlike Oracle B-tree indexes, text indexes need to be explicitly updated. This is to avoid index fragmentation
due to the relatively small number of individual token occurrences within a single document.

Example 6: ALTER INDEX recipeidx REBUILD ONLINE PARAMETERS(‘SYNC’);

Index synchronization is usually run as a timed job (DBMSJOB) at an interval based upon the degree of
index fragmentation, and the document DML rates. Where batch-inserts are the norm, synchronization will take
place immediately following, whereas in an ad-hoc insert environment, SYNC is usually run at regular intervals
throughout the day.
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6 Search Techniques

In its simplest form, CONTAINS can be thought of as a boolean function (ignoring the integer return value).
For a token or phrase (“keyword”) search this can be perfectly acceptable, particularly on small document
collections, or short documents (such as would be found in a product catalog). For larger sets, however, SCORE()
can be used to rank the result-set by degree of relevance to the text query.

CONTAINS has its own internal extended boolean text-query syntax, which can be used to augment the text
tokens searched for. Below are a few of the most useful features.

6.1 Basic

Relevance, for the context index, is defined in terms of term frequency (the more times a term occurs in a
document, the higher the relevance), dampened by the total number of occurrences of the term in the collection.
If a term is frequent in a document collection, we say it contributes less information content - it is more ‘noise’.

The simplest ordered query is on a single token:

Example 7: SELECT name, SCORE(1) FROM recipes WHERE CONTAINS(directions, ‘cheese’, 1)>0 OR-
DER BY SCORE(1) DESC;

NAME SCORE(1)
grilled cheese sandwich 7
omelet 4

Here we can see that the document that mentions ‘cheese’ more often (twice) gets the higher relevance-
ranking. SCORE() is a pseudo-column that carries the relevance information ancillary to the CONTAINS func-
tion. The label, ‘1’ in this case, is used to match the SCORE to the appropriate CONTAINS, as there may be
several CONTAINS in a single SELECT statement.

6.2 Weight (*)

Each query component can be differentiated by ‘weighting’: for instance the top criterion may be be weighted
four times as much as the second, which is weighted twice the weight of the third, in order to give a progressive
relaxation of subqueries.

Example 8: ‘onion * 4 AND cheddar’

Here the ‘onion’ part of the text query is weighted higher than the ‘cheddar’ component. All documents that
match this query will have both terms, but SCORE will be higher for ‘onion’ unless it is greatly outnumbered
by the other term.

6.3 Phrase

Phrase searches find an exact match. ‘cheddar cheese’ finds only those two words in sequence and next to each
other.

6.4 NEAR (;)

NEAR is similar to ‘phrase’ but tokens only need to be close to each other, not next to each other - it is a kind
of less-severe proximity search. Words can appear in any order. Similar to phrase, NEAR has a linguistic aspect
to it, which is loosely defined; such a definition would be something like “two words occurring in the same
sentence” or “two words occurring in the same paragraph.”
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Example 9: ‘jack ; cheese’

This query finds ‘cheese (jack),’ which would be missed by a phrase-only search. It would, however, find
‘jack and jill, mouse cheese,’ which might not be desired.

6.5 Accumulate

Accumulate always assigns a higher SCORE to a document matching anyN query components than to a docu-
ment matching only anyN�1 components. Even though all components may not occur in a document, however,
SCORE will be positive if individual terms do occur. This gives high query relevance at the top of a score-sorted
result set, while allowing a longer ‘tail’, to reduce the chances of an empty result.

Example 10: ‘cheese , swiss , cheddar’

This query will match both example documents, even though only two of the terms are found. The ‘grilled
cheese sandwich’ document, matching two query terms, will score higher than the ‘omelet’ document, which
matches only one term.

7 Further Topics

Other text query operators available to the out-of-the-box Oracle Text installation are boolean AND, OR, NOT,
and MINUS, a fuzzy interface to find spelling and OCR errors, and a complete thesaurus infrastructure. Section
searching is available to exploit document structure in HTML or XML marked-up documents. A highlighting
interface marks up the query terms where they appear in a document, and converts popular word-processor
formats to HTML.

Oracle Text can also produce a ‘theme index’[1]. This is an inverted-list index of concepts derived from the
document collection and a 425,000-term knowledge base. The system has also been used to build automatic
classification and question-answering systems[2].
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1 Introduction
It is estimated that about a third of the time of a typical enterprise knowledge worker is spent searching for
information. Such search and its derivative information retrieval functions are essential components of the in-
frastructure ofenterprise information portals, which are the primary means through which enterprise employees
access information throughout their business. We begin by listing some essential functions of such software,
pointing out where appropriate how such functionality differs from that found in currentweb (as opposed to
enterprise) portals that most readers may be familiar with.

1. The need to access information in diverse repositories including file systems, web servers, Lotus Notes,
Microsoft Exchange, content management systems such as Documentum, as well as relational databases.
In contrast, most web portals deal only with html content.

2. The need to respect fine-grained individual access control rights, typically at the document level; thus
two users issuing the same search/navigation request may see differing sets of matching results due to the
differences in their privileges. In contrast, most web services have only a single class of access control,
or in some cases access levels that form a strict subset hierarchy (as in subscription services with multiple
levels of subscription).

3. The need to index and search a large variety of document types (formats), such as PDF, Microsoft Word
and Powerpoint files, etc., in many different languages.

4. The need to seamlessly and scalably combine structured (e.g., relational) as well as unstructured informa-
tion in a document for enhanced navigation and discovery paradigms.

5. The need to combine search results from internal as well as external sources of information.

6. The integration of search with functions like taxonomy building, classification and personalization.

2 Verity’s K2 Enterprise
We briefly review how these features are addressed in Verity’s flagship K2 Enterprise product. We touch upon
classification and personalization in this section, deferring a detailed discussion of structured versus unstructured
search to Section 3. For each type of repository that is to be accessed (e.g., Documentum, Lotus Notes, databases
through ODBC interfaces), Verity provides agateway. The role of the gateway is to allow a spider to access the
content in the repository, together with the associated security information (i.e., which users can access which
documents). Each repository may contain documents in many different file formats; K2 Enterprise provides
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filters to automatically detect and generate text versions from over 250 document formats. Using gateways and
filters, the spider generates a full-text index that consists of two parts: (1) a positional full-text index that records,
for each word, every occurrence in each document — such fine-grained positional information is necessary to
handle phrase and proximity queries (e.g.,IBM within 4 words ofArmonk); (2) a structured index that records,
for each document, the meta-data associated with it (much as a database table does).

We now highlight three specific capabilities likely to be of interest to this readership.

1. Arbitrary combinations of text and range queries. Consider the query:Give me documents that contain
the phrase “web server”, are of type “Design document”, language “German”, format “sgml”, price
< 10000. Clearly this query has a text/unstructured component (to match the phrase “web server”) as
well as a structured component. We discuss how Verity handles this type query in Section 3, and how this
would differ from a solution that might use an RDBMS.

2. Automatically classifying documents by textual content as well as structure derived from meta-data.
Adding structure to unstructured information is key to enhancing the value of enterprise content. Classi-
fication is a key step in such structure enhancement. This is briefly discussed in Section 2.1.

3. Delivering personalized views of information by re-ranking search results, recommending documents, and
locating experts on the query subject. Both explicit profile information and implicit behavioral patterns
are exploited in the personalization engine. This is briefly discussed in Section 2.2.

2.1 Automatic Classification

While searching provides an efficient way for users to find relevant information in business portals if they know
what to search for, there is a different need for browsing and navigating information. Taxonomies are the most
popular way for organizing documents into navigable structures. With a taxonomy, users can easily navigate
through the category hierarchy to find relevant information. Scoped search within a category typically produces
more relevant results than un-scoped search.

There are two main phases in deploying taxonomies in a portal environment: taxonomy construction, and
maintenance. The former defines the category hierarchy, and the latter populates documents into the taxonomy
once it is built, and modifies the taxonomy structure when needed. Verity refers to a populated taxonomy as a
knowledge treewhich consists of a taxonomy of browsable categories and databases that store the relationships
of documents and categories. Fully automatic taxonomy construction and maintenance often leads to unsatis-
factory results. Consequently, most taxonomies are built and maintained manually by human experts (examples
include the directory structures of Yahoo! and the Open Directory Project). However, manual population of a
large volume of documents is expensive.

Verity’s Intelligent Classifier [5] provides several taxonomy construction methods, each of which can also
be used to categorize documents into a taxonomy: (1) Construct a taxonomy manually through its graphical user
interface. (2) Extract a hierarchy of categories of a taxonomy from URL paths or file paths. (3) Fetch categories
from indexed meta data. This method can be used when categorical information is explicitly listed in a field
in the collection. (4) Generate a taxonomy from document clusters produced by Verity’s clustering algorithm,
which groups similar documents into clusters. A hierarchy of clusters are generated by recursively breaking
large clusters into smaller clusters.

Verity Intelligent Classifier provides the following methods for defining classification rules for each category
in the taxonomy. (1) Manually construct classification rules using the Verity Query Language (VQL); (2) Learn
classification rules for categories automatically from exemplary documents associated with these categories in
the taxonomy; (3) Interactively refine classification rules by providing relevance feedback to the test results
of previously built rules. The core technology that supports these automatic features is Verity’s regularized
Logistic Regression Classifier (LRC). LRC automatically learns a classification rule from a set of documents
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that are labelled as relevant or irrelevant to a category. Let a document be represented by a feature vector
x = [t1; t2; � � � ; td]T , andr be the relevancy measure of the document with respect to the topic,0:0 � r � 1:0.
Given a set of relevant documents and a set of irrelevant documents for a category, the LRC learning algorithm
learns a regression functionlog(r=(1 � r)) = w1t1 + w2t2 + + wdtd + b = f(w; x), such that the separation
between the relevant and irrelevant documents is maximized. Structure risk minimization theory [6] guarantees
a minimized upper bound on the classification error on future documents.

Once the regression function is determined, a future document can be assigned to the category if the rel-
evancy scorer for the document is greater than a pre-specified threshold. This classification rule can be con-
veniently represented by Verity’s powerful query language. Our experiment shows that on Reuter’s benchmark
data set, LRC achieves the state-of-the-art performance at 88% precision-recall break-even rate [1].

Once a knowledge tree is defined in Verity Intelligent Classifier, it can be exported to Verity Knowledge
Organizer [2]. Administrators can configure how to display search results and the category structure to end
users. End-users can browse through the documents in a collection by category and drill down to a subject of
interest. They can also limit the scope of their searches only to the categories of interest.

2.2 Personalization

The Verity Personalization Engine enhances the end-user’s information discovery experience to the next level
beyond search and taxonomies. It uses a tensor space model that represents different entities in the system such
as products, documents, users and queries as tensors in a tensor space. These vectors adapt to latent patterns
in user behavior in order to dynamically personalize the results of subsequent searches in different ways, as
outlined below. The engine builds and maintains a profile for each user, based on a notion of atransactionthat
updates the profile. Some examples of transactions are:

User<joe> bought<Toaster X> upon query<“toaster” >
User<john> viewed<Document Y> upon query<“personalization”>
The user profiles are used to support the following features: (1) Adaptive Ranking – repeated selection of

an item for a given query causes the relevance of the item to be boosted for all users on similar queries. (2)
Document Recommendation – products/documents are recommended based on a combination of the current
query and the user information, based on the user’s past behavior. (3) Document Similarity – documents or
products that are similar to a selected item are recommended. (4) Expert Location – based on a document
that is being viewed, or a query that has been issued, experts/users in the organization are recommended. (5)
Community – a dynamic user community can be presented, based on the current user’s profile.

3 Text Versus Structured Queries

We begin by highlighting some of the issues in text versus structured search in the enterprise. We mentioned
earlier that the index used by a typical enterprise search engine included support for structure as well as un-
structured search. We first address the question: how is the structured information typically derived? There are
three principal means: (1) from meta-data supplied with the document, say in XML form; (2) using classification
techniques such as those described in Section 2.1; (3) by spidering a relational database. In Section 3.1 below we
discuss some settings in which it is advantageous to search structured information outside an RDBMS. We pause
to highlight a second aspect here: spidering an RDBMS is most useful in the case of, say, catalog information in
a B2C or B2B setting. However, most deployments of relational databases entail anenterprise applicationbuilt
on top of the database – for supply-chain or customer relationship management, as examples. In these cases,
simply spidering the database loses sight of the business logic embedded in the application. Vendors are now
attempting to build “application gateways” that spiderthrough the application, in the hope of preserving some
of the business logic. Such efforts still appear to be in their early stages.
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3.1 Combined Text and Structured Querying

In the most general settings, each document has some unstructured text as well as a number of structured at-
tributes. Some of these attributes may assume numerical values; for instance, a description of an automobile
might have the year in which the car is manufactured and its price. A typical query is a conjunction of an
arbitrary text query with an arbitrary range query. In many applications, it is desirable to retrieve and rank doc-
uments that simultaneously meet both the unstructured and the structured query components, without recourse
to two retrieval systems. Using an RDBMS to solve the problem would result in query responses that would
be unacceptably poor. Furthermore, an RDBMS cannot support many features of a full-text engine such as
query-time spell correction and proximity searching (mentioned earlier). (Needless to say, this solution does not
provide for the numerous other features a typical RDBMS provides, such as logging, recovery, etc.) In addition
to retrieving documents that meet the text and parametric queries in a scalable fashion, it is important to be able
to rank the results not only by text query scores, but also by sorting along field values (e.g., price). This allows
for the efficient navigation of a results list, allowing the user to further refine (or relax) the query at hand.

Our solution consists of augmenting a full-text index with an auxiliary parametric index that allows for fast
search, navigation and ranking of query results. We now describe the elements of this index, and how they are
organized in order to support all of the operations described above. Each field is represented as a set (known as
a BucketSet) and each unique item in that field is represented as a member of that set along with position and
frequency information (this datum is known as a Bucket). A set of BucketSet structures make up a completed
structure known as the parametric index which maps directly to the corpus from which it was generated. Extra
meta-data are stored along with the BucketSets to allow ranges (either text, numeric or date) to be extracted.

It is the mechanism by which the BucketSets and Buckets interact (through their parametric representation)
that allows complex set operations (based on nested intersects and unions) to be applied to them. This mechanism
results in: (a) real time cardinality statistics for these operations, and (b) an iterative refinement of the operations
applied to the database, which can result in the reduction of old Buckets and the inclusion of new Buckets
(depending on the semantics applied). In the simple case where A and B are both Buckets of the same set,
“A
T
B” can remove items, whilst “A

S
B” can add items.

We can also express the text search in the parametric domain (i.e., a text search maps to a BucketSet where
each item (hit) is considered as a separate unique Bucket in that set with no context until applied to a parametric
index). Both kinds of BucketSets can interact with the same set of operators. Extra speed is obtained by
performing query optimizations in real time – for instance, by examining the relative sizes and complexities
of the BucketSets when intersecting them and ensuring that the smallest or least complex controls the query
optimization. The text search component is built on Verity’s VDK kernel [3] with a K2 search engine on top
[4]. The approach has been shown to scale to millions of documents with 6-10 fields of structured attributes.
Interactive performance is feasible for several concurrent users, using a standard desktop PC as the server.
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Indexing Methods for Approximate String Matching

Gonzalo Navarro� Ricardo Baeza-Yates� Erkki Sutineny Jorma Tarhioz

Abstract

Indexing for approximate text searching is a novel problem that has received significant attention be-
cause of its applications in signal processing, computational biology, and text retrieval, to name a few.
We classify most indexing methods in a taxonomy that helps understand their essential features. We show
that the existing methods, rather than being completely different as they are often regarded to be, form a
range of solutions, whose optimum is usually found somewhere in between the two extremes.

1 Introduction

Approximate string matching is about finding a pattern in a text where the pattern, the text, or both have suffered
some kind of undesirable corruption. This has a number of applications, such as retrieving musical passages
similar to a sample, finding DNA subsequences after possible mutations, or searching text under the presence of
typing or spelling errors.

The problem ofapproximate string matchingis formally stated as follows: given a long textT1:::n of length
n and a comparatively short patternP1:::m of lengthm, both sequences over an alphabet� of size�, find the
text positions that match the pattern with at mostk “errors”.

Among the many existing error models we focus on the popularLevenshteinor edit distance, where an error
is a character insertion, deletion or substitution. That is, the distanced(x; y) between two stringsx andy is the
minimum number of such errors needed to convert one into the other, and we seek for text substrings that are at
distancek or less from the pattern. Most of the techniques can be easily adapted to other error models. We use
� = k=m as the error ratio, so0 < � < 1.

There are numerous solutions to theon-line version of the problem, where the pattern is preprocessed but
the text is not [15]. They range from the classicalO(mn) worst-case time to the optimalO((k + log�m)n=m)
average case time. Although very fast on-line algorithms exist, many applications handle so large texts that no
on-line algorithm can provide acceptable performance.

An alternative approach when the text is large and searched frequently is to preprocess it: build a data
structure on the text (anindex) beforehand and use it to speed up searches. Many suchindexing methodshave
been developed forexactstring matching [1], but only one decade ago doing the same forapproximatestring
matching was an open problem [2].
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During the last decade, several proposals to index a text to speed up approximate searches have been pre-
sented. No attempt has been made up to now to show them under a common light. This is our purpose. We
classify the existing approaches along two dimensions: data structure and search method.

Four different data structures are used in the literature. They all serve roughly the same purposes but present
different space/time tradeoffs. We mention them from more to less powerful and space demanding.Suffix trees
permit searching for any substring of the text.Suffix arrayspermit the same operations but are slightly slower.
Q-gramspermit searching for any text substring not longer thanq. Q-samplespermit the same but only for
some text substrings.

On the other hand, there are three search approaches.Neighborhood generationgenerates and searches for,
using an index, all the strings that are at distancek or less from the pattern (their neighborhood).Partitioning
into exact searchingselects pattern substrings that must appear unaltered in any approximate occurrence, uses
the index to search for those substrings, and checks the text areas surrounding them. Assuming that the errors
occur in the pattern or in the text leads to radically different approaches.Intermediate partitioningextracts
substrings from the pattern that are searched for allowing fewer errors using neighborhood generation. Again
we can consider that errors occur in the pattern or in the text.

Table 1 illustrates this classification and places the existing schemes in context.

Search Approach
Data Structure Neighborhood Partitioning into Intermediate

Generation Exact Searching Partitioning
Errors in Text Errors in Pattern Errors in Text Errors in Pattern

[10] Jokinen &
Suffix Tree Ukkonen 91 [19] Shi 96

[24] Ukkonen 93
[5] Cobbs 95

Suffix Array [7] Gonnet 88 [17] Navarro &
Baeza-Yates 99

[10] Jokinen &
Q-grams n/a Ukkonen 91 [16] Navarro & [14] Myers 90

[9] Holsti & Baeza-Yates 97
Sutinen 94

Q-samples n/a [21] Sutinen & n/a [18] Navarro n/a
Tarhio 96 et al. 2000

Table 1: Taxonomy of indexes for approximate text searching. A “n/a” means that the data structure is unsuitable
to implement that search approach because not enough information is maintained.

2 Basic Concepts

2.1 Suffix Trees

Suffix trees [1] are widely used data structures for text processing. Any positioni in a textT defines automati-
cally asuffixof T , namelyTi:::. A suffix trieis a trie data structure built over all the suffixes ofT . Each leaf node
points to a suffix. Each internal node represents a unique substring ofT that appears more than once. Every
substring ofT can be found by traversing a path from the root, possibly continuing the search directly in the
text if a leaf is reached. In practice asuffix tree, obtained by compressing unary trie paths, is preferred because
it yieldsO(n) space andO(n) construction time [12, 25] and offers the same functionality. Figure 1 illustrates
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a suffix trie.
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"d"
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"c"

"a"

Suffix Trie

Suffix Array

Figure 1: The suffix trie and suffix array for a sample text. The “$” is a special marker to denote the end of the
text and is lexicographically smaller than the other characters.

To search for a simple pattern in the suffix trie, we just enter it driven by the letters of the pattern, reporting
all the suffix start points in the subtree of the node we arrive at, if any. E.g., consider searching for"abr" in the
example. So the search time is the optimalO(m). A weak point of the suffix tree is its large space requirement,
worsened by the absence of practical schemes to manage it in secondary memory. Among the many attempts
to reduce this space, the best practical implementations still require about 9 times the text size [6] and do not
handle well secondary memory.

2.2 Suffix Arrays

The suffix array [11, 8] is a weak version of the suffix tree, which requires much less space (one pointer per text
position, i.e., about 4 times the text size) and poses a small penalty over the search time.

If the leaves of the suffix tree are traversed in left-to-right order, all the text suffixes are retrieved in lexico-
graphical order. A suffix array is simply such an ordered array containing all the pointers to the text suffixes.
Figure 1 illustrates this.

The suffix array can be built directly inO(n log n) worst case time andO(n log log n) average time [11].
For secondary memory, a more practicalO(n2 logM = M) time algorithm [8] is preferable, whereM is the
amount of main memory available.

Suffix arrays can simulate by binary searching almost every algorithm on suffix trees, at anO(logn) time
penalty factor. This is because each suffix subtree corresponds to a suffix array interval, so moving to a child
node is equivalent to reducing the current suffix array interval by doing two binary searches. For instance, exact
searching for a pattern takesO(m logn) time using this approach.

2.3 Q-gram and Q-sample Indexes

Yet a weaker (and less space demanding) scheme is to limit the length of the strings that can be directly found
in the index. Aq-gram index allows retrieval of text strings of length at mostq.

In a q-gram index, every different textq-gram (substring of lengthq) is stored. For eachq-gram, all its
positions in the text (calledoccurrences) are stored in increasing text order.

An even less space demanding alternative is aq-sample index, where onlysometext q-grams (called textq-
samples) are stored, and therefore not any textq-gram can be found. The textq-samples, unlike the textq-grams,
do not overlap, and there may even be some space between each pair of samples. This severely restricted index
is attractive for its low space requirements, and it still permits searching for long strings, as we will see later.
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A q-gram orq-sample index can be built in linear time, although for large texts a more practicalO(n log(n=M))
time algorithm can be used. Depending onq the index takes from0:5 to 3 times the text size for reasonable re-
trieval performance.

2.4 Computing Edit Distance

The basic algorithm to compute the edit distance between two stringsx andy is based on dynamic programming
(see [15]). To computed(x; y) a matrixC0:::jxj;0:::jyj is filled, whereCj;i = d(x1:::j ; y1:::i). This is computed as
C0;0 = 0 and

Cj;i = min(Cj�1;i�1 + Æ(xj ; yi); Cj�1;i + 1; Cj;i�1 + 1)

whereÆ(a; b) is zero fora = b and 1 otherwise, andC�1;i = Cj;�1 = 1. The minimization accounts for
the three allowed operations: substitutions, deletions and insertions. At the end,Cjxj;jyj = d(x; y). The matrix
is filled, e.g., column-wise to guarantee that necessary cells are already computed. The table in Figure 2 (left)
illustrates this algorithm to computed("survey" , "surgery" ).

The algorithm isO(jxjjyj) time in the worst and average case. The space required is onlyO(jxj) in a
column-wise processing because only the previous column must be stored to compute the new one.

3 Neighborhood Generation

3.1 The Neighborhood of the Pattern

The number of strings that match a patternP with at mostk errors is finite, as the length of any such string
cannot exceedm + k. We call this set of strings the “k-neighborhood” ofP , and denote itUk(P ) = fx 2
��; d(x; P ) � kg.

The idea of this approach is, in essence, to generate all the strings inUk(P ) and use an index to search for
their text occurrences (without errors). Each such string can be searched for separately, as in [14], or a more
sophisticated technique can be used (see next).

The main problem with this approach is thatUk(P ) is quite large. Good bounds [23, 14] show an exponential
growth ink, e.g.,jUk(P )j = O(mk�k) [23]. So this approach works well for smallm andk.

3.2 Backtracking

The suffix tree or array can be used to find all the strings inUk(P ) that are present in the text [7, 24]. Since
every substring of the text (i.e., every potential occurrence) can be found by traversing the suffix tree from the
root, it is sufficient to explore every path starting at the root, descending by every branch up to where it can be
seen that that branch cannot start a string inUk(P ).

We explain the algorithm on a suffix trie. We compute the edit distance between our patternx = P and
every text stringy that labels a path from the root to a trie nodeN . We start at the root with the initial column
Cj;root = j (Section 2.4 withi = 0) and recursively descend by every branch of the trie. For each edge traversed
we compute a new column from the previous assuming that the new character ofy is that labeling the edge just
traversed.

Two cases may occur at nodeN : (a) We may find thatCm;N � k, which means thaty 2 Uk(P ), and hence
we report all the leaves of the current subtree as answers.(b) We may find thatCj;N > k for everyj, which
means thaty is not a prefix of any string inUk(P ) and hence we can abandon this branch of the trie. If none
of these two cases occur, we continue descending by every branch. If we arrive at a leaf node, we continue the
algorithm of Section 2.4 over the text suffix pointed to.

Figure 2 illustrates the process over the path that spells out the string"surgery" . The matrix can be seen
now as a stack (that grows to the right). Withk = 2 the backtracking ends indeed after reading"surge" since
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that string matches the pattern (case(a)). If we had insteadk = 1 the search would have been pruned (case
(b)) after considering"surger" , and in the alternative path shown, after considering"surga" , since in both
cases no entry of the matrix is� 1.

5
4
3
2
2
2
2

s

u

r

g

e

r

y

a

s u r g e r y

0 1 2 3 4 5 6 7

s 1 0 1 2 3 4 5 6

u 2 1 0 1 2 3 4 5

r 3 2 1 0 1 2 3 4

v 4 3 2 1 1 2 3 4

e 5 4 3 2 2 1 2 3

y 6 5 4 3 3 2 2 2

Figure 2: The dynamic programming algorithm run over the suffix trie. We show only one path and one addi-
tional link.

Some improvements to this algorithm [10, 25, 5] avoid processing some redundant nodes at the cost of a
more complex node processing, but their practicality has not been established. This method has been used also
to compare a whole text against another one or against itself [3].

4 Partitioning into Exact Search

Each approximate occurrence of a pattern contains some pattern substrings that match without errors. Hence,
we can derive sufficient conditions for an approximate match based on exact matching of one or more carefully
selected pattern pieces. These pieces are searched for without errors, and the text areas surrounding their occur-
rences are verified for an approximate occurrence of the complete pattern. This technique is called “filtration”
[15].

In indexed searching, some kind of index is used to quickly locate theexactoccurrences of the selected
pattern pieces, and a classical on-line algorithm is used for verification. A general limitation of filtration methods
is that there is always a maximum error ratio� up to where they are useful, as for larger error levels the text
areas to verify cover almost all the text.

A general lemma is useful to unify the many existing variants.

Lemma 1: LetA andB be two strings such thatd(A;B) � k. LetA = A1x1A2x2:::xk+s�1Ak+s, for strings
Ai andxi and for anys � 1. Then, at leasts stringsAi1 : : : Ais appear inB. Moreover, their relative distances
insideB cannot differ from those inA by more thank.

This is clear if we consider the sequence of at mostk edit operations that convertA into B. As each edit
operation can affect at most one of theAi’s, at leasts of them must remain unaltered. The extra requirement on
relative distances follows by considering thatk edit operations cannot produce misalignments larger thank.

Two main branches of algorithms based on the lemma exist, differing essentially in whether the errors are
assumed to occur in the pattern or in the text.
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4.1 Errors in the Pattern

This technique is based on the application of Lemma 1 under the settingP = A, xi = ". That is, the pattern is
split in k+s pieces, and hences of the pieces must appear inside any occurrence. Therefore, thek+s pieces are
searched for in the text and the text areas wheres of those pieces appear under the stated distance requirements
are verified for a complete match.

Using the data structures of Section 2 the time to search for the pieces in the index isO(m) or O(m logn),
but the checking time dominates. The cases = 1, proposed in [16], shows an average time to check the
candidates ofO(m2kn=�m=(k+1)). The cases > 1 is proposed in [19] without any analysis. It is not clear
which is better. Ifs grows, the pieces get shorter and hence there are more matches to check, but on the other
hand, forcings pieces to match makes the filter stricter [19].

Note that, since we cannot know where the pattern pieces can be found in the text, all the text positions must
be searchable. The technique described next, instead, works on aq-sample index. A disadvantage of this smaller
index is that it tolerates lower error ratios.

4.2 Errors in the Text

Assume now that the errors occur in the text, i.e.,A is an occurrence ofP in T . We extract substrings of length
q at fixed text intervals of lengthh � q.

Thoseq-samples correspond to theAi’s of Lemma 1, and the space betweenq-samples to thexi’s. What the
lemma ensures is that, inside any occurrence ofP containingk + s text q-samples, at leasts of them appear in
P at about the same positions (�k). Now, for the lemma to hold, we need to ensure that any occurrence ofP in
T contains at leastk + s text q-samples, i.e.,h � b(m� k � q + 1)=(k + s)c.

At search time, all them� q + 1 (overlapping) patternq-grams are extracted and searched for in the index
of text q-samples. Whens patternq-grams match in the text at the proper distances, the text area is verified for
a complete match. This idea is presented in [21], and earlier versions in [10, 9, 22].

Let us discuss the best value ofq. We want it to be small to avoid a very large set of differentq-samples. We
want it to be large to minimize the amount of verification. Some analyses [20] show thatq = �(log� n) is the
optimal value. On the other hand, little has been said about the bests value, except that a largers may trigger
fewer verifications.

5 Intermediate Partitioning

We present now an approach that lies between the two previous ones. We filter the search by looking for pattern
pieces, but those pieces are large and still may appear with errors in the occurrences. However, they appear with
fewererrors, and therefore we use neighborhood generation to search for them. A new lemma is useful here.

Lemma 2: Let A andB be two strings such thatd(A;B) � k. LetA = A1x1A2x2:::xj�1Aj, for stringsAi

andxi and for anyj � 1. Let ki be any set of nonnegative numbers such that
Pj

i=1 ki � k � j + 1. Then, at
least one stringAi appears with at mostki errors inB.

The proof is easy: if everyAi needs more thanki errors to match inB, then the total distance cannot be less
than(k � j + 1) + j = k + 1. Note that in particular we can chooseki = bk=jc for everyi.

5.1 Errors in the Pattern

Search approaches based on this method have been proposed in [14, 17]. Split the pattern inj pieces, for somej
that we discuss soon. Use neighborhood generation to find the text positions where those pieces appear, allowing
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bk=jc errors. Then, for each such text position, check with an on-line algorithm the surrounding text. The main
question is now whichj value to use.

In [14], the pattern is partitioned because they use aq-gram index, so they use the minimumj that gives
short enough pieces (they are of lengthm=j). In [17] the index can search for pieces of any length, and the
partitioning is done in order to optimize the search time.

Consider the evolution of the search time asj moves from 1 (neighborhood generation) tok+1 (partitioning
into exact search). We search forj pieces of lengthm=j with k=j errors, so the error level� stays about the same
for the subpatterns. Asj moves to 1, the cost to search for the neighborhood of the pieces grows exponentially
with their length, as shown in Section 3.1. Asj moves tok + 1 this cost decreases, reaching evenO(m) when
j = k + 1. So, to find the pieces, a largerj is better.

There is, however, the cost to verify the occurrences too. Consider a pattern that is split inj pieces, for
increasingj. Start withj = 2. Lemma 2 states that every occurrence of the pattern involves an occurrence
of at least one of its two halves (withk=2 errors), although there may be occurrences of the halves that yield
no occurrences of the pattern. Consider now halving the halves (j = 4), so we have four pieces now (call
them “quarters”). Each occurrence of one of the halves involves an occurrence of at least one quarter (withk=4
errors), but there may be many quarter occurrences that yield no occurrences of a pattern half. This shows that,
as we partition the pattern in more pieces, more occurrences are triggered. Hence, the verification cost grows
from zero atj = 1 to its maximum atj = k + 1. The tradeoff is illustrated in Figure 3.
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Figure 3: Intermediate partitioning can be seen as a tradeoff between neighborhood generation and partitioning
into exact search.

In [17] it is shown that the optimalj is�(m= log� n), yielding a time complexity ofO(n�), for 0 � � � 1.
This is sublinear (� < 1) for � < 1 � e=

p
�, a well known limit for any filtration approach [15] (although

the e is pessimistic and is replaced by 1 in practice). Interestingly, the same results are obtained in [14] by
settingq = �(log� n). The experiments in [17] show that this intermediate approach is by far superior to both
extremes.

5.2 Errors in the Text

This time we consider an occurrence containing a sequence ofj q-samples, which must be chosen at steps of
h � b(m � k � q + 1)=jc. By Lemma 2, one of theq-samples must appear in the pattern withbk=jc errors at
most. Moreover, ifeveryq-samplei appears in the pattern blockQi = Phi�k::hi+q�1+k with ki errors, then it
must hold that

P
ki � k.

This method [21, 18] searches every blockQi in the index ofq-samples using backtracking, so as to find
the least number of errors to match each textq-sampleinsideQi, using a slight modification to the algorithm of
Section 3.2. If a zone of consecutive samples is found whose errors add up to at mostk, the area is verified with
an on-line algorithm.

To permit efficient neighborhood searching, we need to limit the maximum error level allowed. Permitting
q errors may be too expensive, as every textq-sample will be considered. Rather, we chooseq > e � bk=jc and
assume that every textq-sample indeed matches withe+1 errors. We search the pattern blocks permitting only
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e errors. Everyq-sample found withki � e errors changes its estimation frome + 1 to ki, otherwise it stays at
the optimistic bounde+ 1.

There is a tradeoff here. If we use a smalle value, then the search of thee-neighborhoods will be cheaper,
but as we have to assume that the textq-samples not found havee + 1 errors, some unnecessary verifications
will be carried out. On the other hand, using largere values gives more exact estimates of the actual number of
errors of each textq-sample and hence reduces unnecessary verifications in exchange for a higher cost to search
thee-environments.

Not enough work has been done on obtaining the optimale. In [18] it is mentioned that, as the cost of the
search grows exponentially withe, the minimale = bk=jc can be a good choice. It is also shown experimentally
that the scheme tolerates higher error levels than the corresponding partitioning into exact search.

6 Conclusions

We have considered indexing mechanisms for approximate string matching, a novel and difficult problem aris-
ing in several areas. We have classified the different approaches using two coordinates: the supporting data
structure and the search approach. We have shown that the most promising alternatives are those that look for an
optimum balance point between exhaustively searching for neighborhoods of pattern pieces and the strictness of
the filtration produced by splitting the pattern into pieces.

A separate issue not covered in this paper is indexing schemes for approximate word matching on natural
language text. This is a much more mature problem with well-established solutions.

Radically innovative ideas are welcome in this area. One such idea is an approximation algorithm with
worst-case performance guarantees [13]. By setting error thresholds, a certain “fuzziness” is tolerated in the
results that are produced, so approximation algorithms should be acceptable for most applications. Another
novel approach that is starting to receive attention (e.g., [4]) is to use the edit distance to structure the text as a
metric space, so our problem is reduced to a metric-space search. More development is necessary to establish
how competitive these ideas could be in practice.
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Abstract

String data is ubiquitous, and its management has taken on particular importance in the past few years.
Approximate queries are very important on string data. This is due, for example, to the prevalence
of typographical errors in data, and multiple conventions for recording attributes such as name and
address. Commercial databases do not support approximate string queries directly, and it is a challenge
to implement this functionality efficiently with user-defined functions (UDFs). In this paper, we develop
a technique for building approximate string processing capabilitieson topof commercial databases by
exploiting facilities already available in them. At the core, our technique relies on generating short
substrings of lengthq, called q-grams, and processing them using standard methods available in the
DBMS. The proposed technique enables various approximate string processing methods in a DBMS, for
example approximate (sub)string selections and joins, and can even be used with a variety of possible
edit distance functions. The approximate string match predicate, with a suitable edit distance threshold,
can be mapped into a vanilla relational expression and optimized by conventional relational optimizers.

1 Introduction

String data is ubiquitous. To name only a few commonplace applications, consider product catalogs (for books,
music, software, etc.), electronic white and yellow page directories, specialized information sources such as
patent databases, and customer relationship management data.

As a consequence, management of string data in databases has taken on particular importance in the past
few years. However, the quality of the string information residing in various databases can be degraded due
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to a variety of reasons, including human typing errors and flexibility in specifying string attributes. Hence, the
results of operations based on exact matching of string attributes are often of lower quality than expected.

For example, consider a corporation maintaining various customer databases. Requests for correlating data
sources are very common in this context. A specific customer might be present in more than one database
because the customer subscribes to multiple services that the corporation offers, and each service may have de-
veloped its database independently. In one database, a customer’s name may be recorded asJohn A. Smith ,
while in another database the name may be recorded asSmith, John . In a different database, due to a typing
error, this name may be recorded asJonh Smith . A request to correlate these databases and create a unified
view of customers will fail to produce the desired output if exact string matching is used in the join.

Unfortunately, commercial databases do not directly support approximate string processing functionality.
Specialized tools, such as those available from Trillium Software1, are useful for matching specific types of
values such as addresses, but these tools are not integrated with databases. To use such tools for information
stored in databases, one would either have to process data outside the database, or be able to use them as user-
defined functions (UDFs) in an object-relational database. The former approach is undesirable in general. The
latter approach is quite inefficient, especially for joins, because relational engines evaluate joins involving UDFs
whose arguments include attributes belonging to multiple tables by essentially computing the cross-products of
the tables and applying the UDFs in a post-processing fashion.

Although there is a fair amount of work on the problem of approximate string matching (see, for exam-
ple, [3]), these results are not used in the context of a relational DBMS. In this paper, we present a technique for
incorporating approximate string processing capabilities to a database. At the core, our technique relies on using
short substrings of lengthq of the database strings (also known asq-grams). We show how a relational schema
can be augmented to directly representq-grams of database strings in auxiliary tables within the database in
a way that will enable use of traditional relational techniques and access methods for performing approximate
string matching operations. Instead of trying to invent completely new join algorithms from scratch (which
would be unlikely to be incorporated into existing commercial DBMSs), we opted for a design that would re-
quire minimal changes to existing database systems. We show how the approximate string match predicate,
with a suitable edit distance threshold, can be mapped into a vanilla SQL expression and optimized by conven-
tional optimizers. The immediate practical benefit of our technique is that approximate string processing can be
widely and effectively deployed in commercial relational databases without extensive changes to the underlying
database system. Furthermore, by not requiring any changes to the DBMS internals, we can re-use existing
facilities, like the query optimizer, join ordering algorithms and selectivity estimation.

The rest of the paper, which reports and expands on work originally presented in [2], is organized as follows.
In Section 2, we present notation and definitions. In Section 3, we develop a principled mechanism for augment-
ing a database withq-gram tables. We describe the conceptual techniques for approximate string processing
usingq-grams in Section 4. Finally, in Section 5, we show how these conceptual techniques can be realized
using SQL queries.

2 Preliminaries

2.1 Notation

We useR, possibly with subscripts, to denote tables,A, possibly with subscripts, to denote attributes, andt,
possibly with subscripts, to denote records in tables. We use the notationR:Ai to refer to attributeAi of table
R, andR:Ai(tj) to refer to the value in attributeR:Ai of recordtj . Let� be a finite alphabet of sizej�j. We use
lower-case Greek symbols, such as�, possibly with subscripts, to denote strings in��. Let � 2 �� be a string
of lengthn. We use�[i : : : j], 1 � i � j � n, to denote a substring of� of lengthj� i+1 starting at positioni.

1www.trillium.com
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To match stringsapproximatelyin a database, we need to specify the approximation metric. Several propos-
als exist for strings to capture the notion of “approximate equality.” Among them, the notion ofedit distance
between two strings is very popular.

Definition 1: Theedit distancebetween two strings is the minimum number of edit operations (i.e.,insertions,
deletions, andsubstitutionsof single characters) needed to transform one string into the other.

Although we will mainly focus on theedit distancemetric in this paper, we note that our proposed techniques
can be used for a variety of other distance metrics as well.

2.2 Q-grams: A Foundation for Approximate String Processing

Below, we briefly review the notion of positionalq-grams from the literature, and we give the intuition behind
their use for approximate string matching [7, 6, 4]. Given a string�, its positional q-gramsare obtained by
“sliding” a window of lengthq over the characters of�. Sinceq-grams at the beginning and the end of the string
can have fewer thanq characters from�, we introduce new characters “#” and “%” not in �, and conceptually
extend the string� by prefixing it withq � 1 occurrences of “#” and suffixing it withq � 1 occurrences of “%”.
Thus, eachq-gram contains exactlyq characters, though some of these may not be from the alphabet�.

Definition 2: A positionalq-gram of a string� is a pair(i; �[i : : : i + q � 1]), where�[i : : : i + q � 1] is the
q-gram of� that starts at positioni, counting on the extended string. The setG� of all positionalq-grams of a
string� is the set of all thej�j+ q � 1 pairs constructed from allq-grams of�.

The intuition behind the use ofq-grams as a foundation for approximate string processing is that when two
strings�1 and�2 are within a small edit distance of each other, they share a large number ofq-grams in com-
mon [6, 4]. Consider the following example. The positionalq-grams of lengthq=3 for string john smith
aref(1,##j) , (2,#jo) , (3,joh) , (4,ohn) , (5,hn ) , (6,n s) , (7, sm) , (8,smi) , (9,mit) ,
(10,ith) , (11,th%) , (12,h%%) g. Similarly, the positionalq-grams of lengthq=3 for john a smith ,
which is at an edit distance of two fromjohn smith , aref(1,##j) , (2,#jo) , (3,joh) , (4,ohn) ,
(5,hn ) , (6,n a) , (7, a ) , (8,a s) , (9, sm) , (10,smi) , (11,mit) , (12,ith) , (13,th%) ,
(14,h%%) g. If we ignore the position information, the twoq-gram sets have 11q-grams in common. In-
terestingly, only the first five positionalq-grams of the first string are also positionalq-grams of the second
string. However, an additional six positionalq-grams in the two strings differ in their position by just two posi-
tions each. This illustrates that, in general, the use of positionalq-grams for approximate string processing will
involve comparing positions of “matching”q-grams within a certain “band.”

3 Augmenting a Database with Positionalq-Grams

To enable approximate string processing in a database system based on the use ofq-grams, we need a principled
mechanism for augmenting the database with positionalq-grams corresponding to the original database strings.

LetR be a table with schema(A0; A1; : : : ; Am), such thatA0 is the key, and some attributesAi, i > 0, are
string-valued. For each string attributeAi that we wish to consider for approximate string processing, we create
an auxiliary tableRAiQ(A0; P os;Qgram) with three attributes. For a string� in attributeAi of a record of
R, its j�j + q � 1 positionalq-grams are represented asj�j + q � 1 separate records in the tableRAiQ, where
RAiQ:Pos identifies the position of theq-gramRAiQ:Qgram. Thesej�j + q � 1 records all share the same
value for the attributeRAiQ:A0, which serves as the foreign key attribute to tableR.

Interestingly, these tables can be created in current database systems, using simple SQL statements. To do
so, we use a tableN that contains a single attributeI with the numbers from 1 toM (whereM is the maximum
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INSERT INTO RAiQ

SELECT R:A0, N:I,
SUBSTR(SUBSTR(’#: : :#’,1, q � 1) || UPPER( R:Ai) || SUBSTR(’% : : :%’,1, q � 1), N:I, q)

FROMR, N

WHEREN:I � LENGTH(R:Ai) +q � 1;

Figure 1: Creating the auxiliaryq-gram tableRAiQ

length of a string) [1]. Then, we join this table with the columnR:Ai, and we take all theq-grams of each string
in R:Ai that start at positionx, wherex is the value stored in fieldI of a tuple ofN . The result of this join is
then used to create the auxiliary tableRAiQ. The exact SQL query is presented in Figure 1.

The space overhead for the auxiliaryq-gram table for a string attributeAi of a relationR with n records is:

S(RAiQ) = n(q � 1)(q + C) + (q + C)
nX

j=1

jR:Ai(tj)j

whereC is the size of the additional attributes in the auxiliaryq-gram table (i.e.,A0 andPos). Sincen(q�1) �Pn
j=1 jR:Ai(tj)j, for any reasonable value ofq, it follows thatS(RAiQ) � 2(q + C)

Pn
j=1 jR:Ai(tj)j. Thus,

the size of the auxiliary table is bounded by some linear function ofq times the size of the corresponding column
in the original table.

Depending on the frequency of the approximate string operations, the database administrator can choose
whether or not to have the tables permanently materialized. If the space overhead is not an issue, then the cost of
keeping the auxiliary tables updated is relatively small. After creating an augmented database with the auxiliary
tables for each of the string attributes of interest, we can efficiently perform approximate string processing using
simple SQL queries. We describe the methods next.

4 Filtering Results Usingq-gram Properties

In this section, we present our basic techniques for approximate string processing based on theedit distance
metric. Later we will describe appropriate modifications to these filters to accommodate alternative distance
metrics. The key objective here is to efficiently identify candidate answers to our problems by taking advantage
of theq-grams in the auxiliary database tables and using features already available in database systems such as
traditional access and join methods. For reasons of correctness and efficiency, we requireno false dismissals
andfew false positivesrespectively.

Count Filtering: The basic idea of COUNT FILTERING is to take advantage of the information conveyed
by the setsG�1 andG�2 of q-grams of the strings�1 and�2, ignoring positional information, in determining
whether�1 and�2 are within edit distancek.

The intuition here is that strings that are within a small edit distance of each other share a large number of
q-grams in common. This intuition has appeared in the literature earlier [5], and can be formalized as follows.

Proposition 3: Consider strings�1 and �2, of lengthsj�1j and j�2j, respectively. If�1 and�2 are within
an edit distance ofk, then the cardinality ofG�1 \ G�2 , ignoring positional information, must be at least
(max(j�1j; j�2j) + q � 1) � k � q.

Intuitively, this holds because one edit distance operation can modifyat mostq q-grams, sok edit distance
operations can modify at mostkq q-grams.
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Position Filtering: While COUNT FILTERING is effective in improving the efficiency of approximate string
processing, it does not take advantage ofq-gram position information. In general, the interaction betweenq-
gram match positions and the edit distance threshold is quite complex. Any givenq-gram in one string may not
occur at all in the other string, and positions of successiveq-grams may be off due to insertions and deletions.
Furthermore, as always, we must keep in mind the possibility of aq-gram in one string occurring at multiple
positions in the other string.

Intuitively, a positionalq-gram(i; �1) in one string�1 is said tocorrespondto a positionalq-gram(j; �2) in
another string�2 if �1 = �2 and(i; �1), after the sequence of edit operations that convert�1 to �2 and affectonly
the positionof theq-gram�1, “becomes”q-gram(j; �2) in the edited string. Notwithstanding the complexity of
matching positionalq-grams in the presence of edit errors in strings, a useful filter can be devised based on the
following observation [4].

Proposition 4: If strings �1 and�2 are within an edit distance ofk, then a positionalq-gram in onecannot
correspondto a positionalq-gram in the other that differs from it by more thank positions.

Length Filtering: We finally observe that string length provides useful information to quickly prune strings
that are not within the desired edit distance.

Proposition 5: If strings�1 and�2 are within edit distancek, their lengths cannot differ by more thank.

5 Approximate String Processing in a Database

Below we describe how we can use the previously described properties ofq-grams to perform approximate
string processing tasks inside a database system. Additional details, including an experimental evaluation, are
presented in [2].

5.1 Approximate String Selections

This problem can be formalized as follows: Given a tableR with a string attributeR:Ai and a string query�,
retrieve all recordst 2 R such that editdistance(�;R:Ai(t)) � k.

To perform this operation it is first necessary to create theq-gram set for the query string�. This can be
done easily in SQL, in a manner similar to the SQL statement of Figure 1. Theseq-grams are stored in a small
auxiliary tableTQ. After this step, it is possible to find all the strings inR:Ai that are possible candidate
answers. This can be achieved on the augmented database using the SQL statement of Figure 2 that implements
the filters described in Section 4. Consequently, if a relational engine receives a request for an approximate
string operation, it can directly map it to a conventional SQL expression and optimize it as usual. (Of course,k
andq are constants that need to be instantiated before the query is evaluated.) However, even after the filtering
steps, the candidate set may still have false positives. Hence, a UDF invocationedit distance( R:Ai; �; k)
still needs to be performed, but hopefully on just a small fraction of the strings.

5.2 Approximate String Joins

In a similar manner, we can efficiently implement approximate string joins: given two tablesR1 andR2 with
string attributesR1:Ai andR2:Aj respectively, report all pairs of strings that are within edit distancek.

In this case, we directly join the auxiliaryq-gram tables, and we report pairs of strings with enough cor-
respondingq-grams in common. Essentially, the SQL query expression in Figure 3 joins the auxiliary tables
corresponding to the string-valued attributesR1:Ai andR2:Aj on theirQgram andPos attributes, along with
the foreign-key/primary-key joins with the original database tablesR1 andR2 to retrieve the string pairs that
need to be returned to the user.
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SELECT R:A0, R:Ai

FROM R, TQ, RAiQ

WHERE R:A0 = RAiQ:A0 AND RAiQ:Qgram = TQ:Qgram AND
RAiQ:Pos � TQ:Pos+ k AND RAiQ:Pos � TQ:Pos� k AND
LENGTH(R:Ai) � LENGTH(�) + k AND LENGTH(R:Ai) � LENGTH(�)� k

GROUP BYR:A0; R:Ai

HAVING COUNT(*)� LENGTH(R:Ai)� 1� (k � 1) � q AND COUNT(*)� LENGTH(�)� 1� (k � 1) � q

Figure 2: Performing approximate string selections in an augmented DBMS using SQL

SELECT R1:A0, R2:A0, R1:Ai, R2:Aj

FROM R1, R1AiQ, R2, R2AjQ

WHERE R1:A0 = R1AiQ:A0 AND R2:A0 = R2AjQ:A0 AND
R1AiQ:Qgram = R2AjQ:Qgram AND
R1AiQ:Pos � R2AjQ:Pos+ k AND R1AiQ:Pos � R2AjQ:Pos� k AND
LENGTH(R1:Ai) � LENGTH(R2:Aj) + k AND LENGTH(R1:Ai) � LENGTH(R2:Aj)� k

GROUP BYR1:A0; R2:A0; R1:Ai; R2:Aj

HAVING COUNT(*)� LENGTH(R1:Ai)� 1� (k � 1) � q AND COUNT(*)� LENGTH(R2:Aj)� 1� (k � 1) � q

Figure 3: Performing approximate string joins in an augmented DBMS using SQL

5.3 Approximate Substring Processing

A different type of approximate string match of interest is based on one string being a substring of another,
possibly allowing for some errors. We can formalize the approximate substring selection problem as follows.
Given a tableR with a string attributeR:Ai and a query string�, retrieve all recordst from R, such that for
some substring�R of R:Ai(t), edit distance(�R; �) � k. For this edit distance metric, we have to revise the
filters described in Section 4. Specifically, LENGTH FILTERING and POSITION FILTERING are not applicable,
since theq-gram at positioni in � may match at any arbitrary position inR:Ai(t) and not just ini � k. Also
R:Ai(t) might be of arbitrary length and still have a substring match with�. Finally, COUNT FILTERING has a
different threshold, reflecting the fact that theq-grams at the beginning and at the end of� (with the “extended”
characters ‘#’ and ‘%’) might not match the respectiveq-grams ofR:Ai(t).

Proposition 6: Consider strings�1 and�2. If �2 has a substring�S such that�1 and�S are within an edit
distance ofk, then the cardinality ofG�1 \ G�S , ignoring positional information, must be at leastj�1j � (k +
1)q + 1.

Using this result, it is possible to write the respective SQL queries to perform selections and joins based on
approximate substring matches. The SQL expressions are very similar to the ones described in Figures 2 and 3,
but with a different threshold for COUNT FILTERING and without the conditions that perform the POSITION and
LENGTH FILTERING.

5.4 Allowing for Block Moves

Traditional string edit distance computations are for single character insertions, deletions and substitutions. If a
whole block of characters is modified or moved, the cost charged is proportional to the length of the block. In
many applications, we would like to keep a fixed charge for block move operations, independent of block length.
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It turns out that theq-gram method is suited to this enhanced metric, and in this section we consider the issues
involved in so doing. For this purpose, we begin by extending the definition of edit distance.

Definition 7: Theextended edit distancebetween two strings is the minimum cost of edit operations needed to
transform one string into the other. The operations allowed are single character insertion, deletion and substitu-
tion, at unit cost; and the movement of a block of contiguous characters, at a cost of� units.

Theorem 8: Let G�1 ; G�2 be the set ofq-grams for strings�1 and�2 in the database. If the extended edit
distance between�1 and�2 is less thank, then the cardinality ofG�1 \G�2 , ignoring positional information, is
at leastmax(j�1j; j�2j)� 1� 3(k � 1)q=�0, where�0 = min(3; �).

Intuitively, the bound arises from the fact that the block move operation can transform a string of the form
��Æ� to �Æ��, which can result in up to3q � 3 mismatchingq-grams.

Based on the above observations, it is easy to see that one can apply COUNT FILTERING (with a suitably
modified threshold) and LENGTH FILTERING for approximate string processing with block moves. However, in-
corporating POSITION FILTERING is not possible as described earlier because block moves may end up moving
q-grams arbitrarily.

Again, it is possible to write the appropriate SQL queries to perform selections and joins based on the
extended edit distance. The statements will apply only the correct filters and will return a set of candidate
answers than can be later verified for correctness using a suitable UDF.

6 Conclusions

The ubiquity of string data in a variety of databases, and the diverse population of users of these databases, has
brought the problem of string-based querying and searching to the forefront of the database community. Given
the preponderance of errors in databases, and the possibility of mistakes by the querying agent, returning query
results based on approximate string matching is crucial. In this paper, we have demonstrated that approximate
string processing can be widely and effectively deployed in commercial relational databases without extensive
changes to the underlying database system.
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Abstract

For thousands of years people have realized the importance of archiving and finding information. With
the advent of computers, it became possible to store large amounts of information; and finding useful
information from such collections became a necessity. The field of Information Retrieval (IR) was born
in the 1950s out of this necessity. Over the last forty years, the field has matured considerably. Several
IR systems are used on an everyday basis by a wide variety of users. This article is a brief overview of
the key advances in the field of Information Retrieval, and a description of where the state-of-the-art is
at in the field.

1 Brief History

The practice of archiving written information can be traced back to around 3000 BC, when the Sumerians
designated special areas to store clay tablets with cuneiform inscriptions. Even then the Sumerians realized
that proper organization and access to the archives was critical for efficient use of information. They developed
special classifications to identify every tablet and its content. (Seehttp://www.libraries.gr for a
wonderful historical perspective on modern libraries.)

The need to store and retrieve written information became increasingly important over centuries, especially
with inventions like paper and the printing press. Soon after computers were invented, people realized that
they can be used for storing and mechanically retrieving large amounts of information. In 1945 Vannevar Bush
published a ground breaking article titled “As We May Think” that gave birth to the idea of automatic access to
large amounts of stored knowledge. [5] In the 1950s, this idea materialized into more concrete descriptions of
how archives of text could be searched automatically. Several works emerged in the mid 1950s that elaborated
upon the basic idea of searching text with a computer. One of the most influential methods was described by H.P.
Luhn in 1957, in which (put simply) he proposed using words as indexing units for documents and measuring
word overlap as a criterion for retrieval. [17]

Several key developments in the field happened in the 1960s. Most notable were the development of the
SMART system by Gerard Salton and his students, first at Harvard University and later at Cornell Univer-
sity; [25] and the Cranfield evaluations done by Cyril Cleverdon and his group at the College of Aeronautics in
Cranfield. [6] The Cranfield tests developed an evaluation methodology for retrieval systems that is still in use
by IR systems today. The SMART system, on the other hand, allowed researchers to experiment with ideas to

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

35



improve search quality. A system for experimentation coupled with good evaluation methodology allowed rapid
progress in the field, and paved way for many critical developments.

The 1970s and 1980s saw many developments built on the advances of the 1960s. Various models of doc-
ument retrieval were developed and advances were made along all dimensions of the retrieval process. These
new models/techniques were experimentally proven to be effective on small text collections (several thousand
articles) available to researchers at the time. However, due to lack of availability of large text collections,
the question whether these models and techniques would scale to larger corpora remained unanswered. This
changed in 1992 with the inception of Text Retrieval Conference, or TREC1. [11] TREC is a series of evalu-
ation conferences sponsored by various US Government agencies under the auspices of NIST, which aims at
encouraging research in IR from large text collections.

With large text collections available under TREC, many old techniques were modified, and many new tech-
niques were developed (and are still being developed) to do effective retrieval over large collections. TREC has
also branched IR into related but important fields like retrieval of spoken information, non-English language
retrieval, information filtering, user interactions with a retrieval system, and so on. The algorithms developed
in IR were the first ones to be employed for searching the World Wide Web from 1996 to 1998. Web search,
however, matured into systems that take advantage of the cross linkage available on the web, and is not a focus
of the present article. In this article, I will concentrate on describing the evolution of modern textual IR systems
( [27, 33, 16] are some good IR resources).

2 Models and Implementation

Early IR systems were boolean systems which allowed users to specify their information need using a complex
combination of boolean ANDs, ORs and NOTs. Boolean systems have several shortcomings, e.g., there is
no inherent notion of document ranking, and it is very hard for a user to form a good search request. Even
though boolean systems usually return matching documents in some order, e.g., ordered by date, or some other
document feature, relevance ranking is often not critical in a boolean system. Even though it has been shown by
the research community that boolean systems are less effective than ranked retrieval systems, many power users
still use boolean systems as they feel more in control of the retrieval process. However, most everyday users
of IR systems expect IR systems to do ranked retrieval. IR systems rank documents by their estimation of the
usefulness of a document for a user query. Most IR systems assign a numeric score to every document and rank
documents by this score. Several models have been proposed for this process. The three most used models in IR
research are the vector space model, the probabilistic models, and the inference network model.

2.1 Vector Space Model

In the vector space model text is represented by a vector ofterms. [28] The definition of a term is not inherent
in the model, but terms are typically words and phrases. If words are chosen as terms, then every word in the
vocabulary becomes an independent dimension in a very high dimensional vector space. Any text can then be
represented by a vector in this high dimensional space. If a term belongs to a text, it gets a non-zero value in the
text-vector along the dimension corresponding to the term. Since any text contains a limited set of terms (the
vocabulary can be millions of terms), most text vectors are very sparse. Most vector based systems operate in
the positive quadrant of the vector space, i.e., no term is assigned a negative value.

To assign a numeric score to a document for a query, the model measures thesimilarity between the query
vector (since query is also just text and can be converted into a vector) and the document vector. The similarity
between two vectors is once again not inherent in the model. Typically, the angle between two vectors is used
as a measure of divergence between the vectors, and cosine of the angle is used as the numeric similarity (since

1http://trec.nist.gov
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cosine has the nice property that it is 1.0 for identical vectors and 0.0 for orthogonal vectors). As an alternative,
the inner-product (or dot-product) between two vectors is often used as a similarity measure. If all the vectors
are forced to be unit length, then the cosine of the angle between two vectors is same as their dot-product. If
~D is the document vector and~Q is the query vector, then the dot-product similarity between documentD and
queryQ (or score ofD for Q) can be represented as:

Sim( ~D; ~Q) =
X

ti2Q;D

wtiQ � wtiD

wherewtiQ is the value of theith component in the query vector~Q, andwtiD is the ith component in the

document vector~D. (Since any word not present in either the query or the document has awtiQ or wtiD value
of 0, respectively, we can do the summation only over the terms common in the query and the document.) How
we arrive atwtiQ andwtiD is not defined by the model, but is quite critical to the search effectiveness of an IR
system.wtiD is often referred to as theweightof term-i in documentD, and is discussed in detail in Section 4.1.

2.2 Probabilistic Models

This family of IR models is based on the general principle that documents in a collection should be ranked
by decreasing probability of their relevance to a query. This is often calledthe probabilistic ranking principle
(PRP). [20] Since true probabilities are not available to an IR system, probabilistic IR modelsestimatethe
probability of relevance of documents for a query. This estimation is the key part of the model, and this is where
most probabilistic models differ from one another. The initial idea of probabilistic retrieval was proposed by
Maron and Kuhns in a paper published in 1960. [18] Since then, many probabilistic models have been proposed,
each based on a different probability estimation technique.

Due to space limitations, it is not possible to discuss the details of these models here. However, the fol-
lowing description abstracts out the common basis for these models. We denote the probability of relevance
for documentD by P (RjD). Since this ranking criteria is monotonic under log-odds transformation, we can
rank documents bylogP (RjD)

P ( �RjD)
, whereP ( �RjD) is the probability that the document is non-relevant. This, by

simple bayes transform, becomeslogP (DjR)�P (R)
P (Dj �R)�P ( �R)

. Assuming that the prior probability of relevance, i.e.,P (R),

is independent of the document under consideration and thus is constant across documents,P (R) andP ( �R) are
just scaling factors for the final document scores and can be removed from the above formulation (for ranking
purposes). This further simplifies the above formulation to:logP (DjR)

P (Dj �R)
.

Based on the assumptions behind estimation ofP (DjR), different probabilistic models start diverging at
this point. In the simplest form of this model, we assume that terms (typically words) are mutually independent
(this is often called theindependence assumption), andP (DjR) is re-written as a product of individual term
probabilities, i.e., probability of presence/absence of a term in relevant/non-relevant documents:

P (DjR) =
Y

ti2Q;D

P (tijR) �
Y

tj2Q; �D

(1� P (tj jR))

which uses probability of presence of a termti in relevant documents for all terms that are common to the query
and the document, and the probability of absence of a termtj from relevant documents for all terms that are
present in the query and absent from the document. Ifpi denotesP (tijR), andqi denotesP (tij �R), the ranking
formula log(P (DjR)

P (Dj �R)
) reduces to:

log

Q
ti2Q;D pi �

Q
tj2Q; �D (1� pj)

Q
ti2Q;D qi �

Q
tj2Q; �D (1� qj)
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For a given query, we can add to this a constantlog(
Q

ti2Q
1�qi
1�pi

) to transform the ranking formula to use only
the terms present in a document:

log
Y

ti2Q;D

pi � (1� qi)

qi � (1� pi)
or

X

ti2Q;D

log
pi � (1� qi)

qi � (1� pi)

Different assumptions for estimation ofpi andqi yield different document ranking functions. E.g., in [7] Croft
and Harper assume thatpi is the same for all query terms andpi1�pi

is a constant and can be ignored for ranking
purposes. They also assume that almost all documents in a collection are non-relevant to a query (which is very
close to truth given that collections are large) and estimateqi by ni

N , whereN is the collection size andni is
the number of documents that contain term-i. This yields a scoring function

P
ti2Q;D logN�ni

ni
which is similar

to the inverse document frequency function discussed in Section 4.1. Notice that if we think oflog pi�(1�qi)qi�(1�pi)
as

the weight of term-i in documentD, this formulation becomes very similar to the similarity formulation in the
vector space model (Section 2.1) with query terms assigned a unit weight.

2.3 Inference Network Model

In this model, document retrieval is modeled as an inference process in an inference network. [32] Most tech-
niques used by IR systems can be implemented under this model. In the simplest implementation of this model,
a document instantiates a term with a certain strength, and the credit from multiple terms is accumulated given
a query to compute the equivalent of a numeric score for the document. From an operational perspective, the
strength of instantiation of a term for a document can be considered as theweightof the term in the document,
and document ranking in the simplest form of this model becomes similar to ranking in the vector space model
and the probabilistic models described above. The strength of instantiation of a term for a document is not
defined by the model, and any formulation can be used.

2.4 Implementation

Most operational IR systems are based on theinverted listdata structure. This enables fast access to a list
of documents that contain a term along with other information (for example, the weight of the term in each
document, the relative positions of the term in each document, etc.). A typical inverted list may be stored as:

ti !< da; ::: >;< db; ::: >; :::; < dn; ::: >

which depicts that term-i is contained inda, db, . . . ,dn, and stores any other information. All models described
above can be implemented using inverted lists. Inverted lists exploit the fact that given a user query, most IR
systems are only interested in scoring a small number of documents that contain some query term. This allows
the system to only score documents that will have a non-zero numeric score. Most systems maintain the scores
in a heap (or another similar data structure) and at the end of processing return the top scoring documents for
a query. Since all documents are indexed by the terms they contain, the process of generating, building, and
storing document representations is calledindexingand the resulting inverted files are called theinverted index.

Most IR systems use single words as terms. Words that are considered non-informative, like function words
(the, in, of, a, . . .), also calledstop-words, are often ignored. Conflating various forms of the same word to
its root form, calledstemmingin IR jargon, is also used by many systems. The main idea behind stemming
is that users searching for information onretrieval will also be interested in articles that have information
aboutretrieve, retrieved, retrieving, retriever , and so on. This also makes the system
susceptible to errors due to poor stemming. For example, a user interested ininformation retrieval
might get an article titledInformation on Golden Retrievers due to stemming. Several stemmers
for various languages have been developed over the years, each with its own set of stemming rules. However,
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the usefulness of stemming for improved search quality has always been questioned in the research community,
especially for English. The consensus is that, for English, on average stemming yields small improvements in
search effectiveness; however, in cases where it causes poor retrieval, the user can be considerably annoyed. [12]
Stemming is possibly more beneficial for languages with many word inflections (like German).

Some IR systems also use multi-word phrases (e.g., “information retrieval”) as index terms. Since phrases
are considered more meaningful than individual words, a phrase match in the document is considered more
informative than single word matches. Several techniques to generate a list of phrases have been explored. These
range from fully linguistic (e.g., based on parsing the sentences) to fully statistical (e.g., based on counting word
cooccurrences). It is accepted in the IR research community that phrases are valuable indexing units and yield
improved search effectiveness. However, the style of phrase generation used is not critical. Studies comparing
linguistic phrases to statistical phrases have failed to show a difference in their retrieval performance. [8]

3 Evaluation

Objective evaluation of search effectiveness has been a cornerstone of IR. Progress in the field critically depends
upon experimenting with new ideas and evaluating the effects of these ideas, especially given the experimental
nature of the field. Since the early years, it was evident to researchers in the community that objective evaluation
of search techniques would play a key role in the field. The Cranfield tests, conducted in 1960s, established the
desired set of characteristics for a retrieval system. Even though there has been some debate over the years, the
two desired properties that have been accepted by the research community for measurement of search effective-
ness arerecall: the proportion of relevant documents retrieved by the system; andprecision: the proportion of
retrieved documents that are relevant.[6]

It is well accepted that a good IR system should retrieve as many relevant documents as possible (i.e., have
a high recall), and it should retrieve very few non-relevant documents (i.e., have high precision). Unfortunately,
these two goals have proven to be quite contradictory over the years. Techniques that tend to improve recall
tend to hurt precision and vice-versa. Both recall and precision are set oriented measures and have no notion
of ranked retrieval. Researchers have used several variants of recall and precision to evaluate ranked retrieval.
For example, if system designers feel that precision is more important to their users, they can use precision in
top ten or twenty documents as the evaluation metric. On the other hand if recall is more important to users,
one could measure precision at (say) 50% recall, which would indicate how many non-relevant documents a
user would have to read in order to find half the relevant ones. One measure that deserves special mention
is average precision, a single valued measure most commonly used by the IR research community to evaluate
ranked retrieval. Average precision is computed by measuring precision at different recall points (say 10%, 20%,
and so on) and averaging. [27]

4 Key Techniques

Section 2 described how different IR models can implemented using inverted lists. The most critical piece of
information needed for document ranking in all models is a term’s weight in a document. A large body of work
has gone into proper estimation of these weights in different models. Another technique that has been shown
to be effective in improving document ranking is query modification viarelevance feedback. A state-of-the-art
ranking system uses an effective weighting scheme in combination with a good query expansion technique.

4.1 Term Weighting

Various methods for weighting terms have been developed in the field. Weighting methods developed under
the probabilistic models rely heavily upon better estimation of various probabilities. [21] Methods developed
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tf is the term’s frequency in document
qtf is the term’s frequency in query
N is the total number of documents in the collection
df is the number of documents that contain the term
dl is the document length (in bytes), and
avdl is the average document length

Okapi weighting based document score: [23]

X

t2Q;D

ln
N � df + 0:5

df + 0:5
� (k1 + 1)tf

(k1(1� b) + b dl

avdl
) + tf

� (k3 + 1)qtf

k3 + qtf

k1 (between 1.0–2.0),b (usually 0.75), andk3 (between 0–1000) are constants.

Pivoted normalization weighting based document score: [30]

X

t2Q;D

1 + ln(1 + ln(tf ))

(1� s) + s dl

avdl

� qtf � lnN + 1

df

s is a constant (usually 0.20).

Table 1: Modern Document Scoring Schemes

under the vector space model are often based on researchers’ experience with systems and large scale exper-
imentation. [26] In both models, three main factors come into play in the final term weight formulation. a)
Term Frequency (or tf): Words that repeat multiple times in a document are considered salient. Term weights
based ontf have been used in the vector space model since the 1960s. b) Document Frequency: Words that ap-
pear in many documents are considered common and are not very indicative of document content. A weighting
method based on this, called inverse document frequency (oridf) weighting, was proposed by Sparck-Jones early
1970s. [15] And c) Document Length: When collections have documents of varying lengths, longer documents
tend to score higher since they contain more words and word repetitions. This effect is usually compensated by
normalizing for document lengths in the term weighting method. Before TREC, both the vector space model and
the probabilistic models developed term weighting schemes which were shown to be effective on the small test
collections available then. Inception of TREC provided IR researchers with very large and varied test collections
allowing rapid development of effective weighting schemes.

Soon after first TREC, researchers at Cornell University realized that using rawtf of terms is non-optimal,
and a dampened frequency (e.g., a logarithmictf function) is a better weighting metric. [4] In subsequent years,
an effective term weighting scheme was developed under a probabilistic model by Steve Robertson and his
team at City University, London. [22] Motivated in part by Robertson’s work, researchers at Cornell University
developed better models of how document length should be factored into term weights. [29] At the end of this
rapid advancement in term weighting, the field had two widely used weighting methods, one (often calledOkapi
weighting) from Robertson’s work, and the second (often calledpivoted normalization weighting) from the work
done at Cornell University. Most research groups at TREC currently use some variant of these two weightings.
Many studies have used the phrasetf-idf weightingto refer to any term weighting method that usestf and idf,
and do not differentiate between using a simple document scoring method (like

P
t2Q;D tf � lnN

df ) and a state-of-
the-art scoring method (like the ones shown in Table 1). Many such studies claim that their proposed methods
are far superior thantf-idf weighting, often a wrong conclusion based on the poor weighting formulation used.
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4.2 Query Modification

In the early years of IR, researchers realized that it was quite hard for users to formulate effective search requests.
It was thought that adding synonyms of query words to the query should improve search effectiveness. Early
research in IR relied on a thesaurus to find synonyms.[14] However, it is quite expensive to obtain a good general
purpose thesaurus. Researchers developed techniques to automatically generate thesauri for use in query mod-
ification. Most of the automatic methods are based on analyzing word cooccurrence in the documents (which
often produces a list of strongly related words). Most query augmentation techniques based on automatically
generated thesaurii had very limited success in improving search effectiveness. The main reason behind this is
the lack of query context in the augmentation process. Not all words related to a query word are meaningful
in context of the query. E.g., even thoughmachine is a very good alternative for the wordengine , this
augmentation is not meaningful if the query issearch engine .

In 1965 Rocchio proposed using relevance feedback for query modification. [24] Relevance feedback is
motivated by the fact that it is easy for users to judge some documents as relevant or non-relevant for their query.
Using such relevance judgments, a system can then automatically generate a better query (e.g., by adding related
new terms) for further searching. In general, the user is asked to judge the relevance of the top few documents
retrieved by the system. Based on these judgments, the system modifies the query and issues the new query
for finding more relevant documents from the collection. Relevance feedback has been shown to work quite
effectively across test collections.

New techniques to do meaningful query expansion in absence of any user feedback were developed early
1990s. Most notable of these ispseudo-feedback, a variant of relevance feedback. [3] Given that the top few
documents retrieved by an IR system are often on the general query topic, selecting related terms from these
documents should yield useful new terms irrespective of document relevance. In pseudo-feedback the IR sys-
tem assumes that the top few documents retrieved for the initial user query are “relevant”, and does relevance
feedback to generate a new query. This expanded new query is then used to rank documents for presentation to
the user. Pseudo feedback has been shown to be a very effective technique, especially for short user queries.

5 Other Techniques and Applications

Many other techniques have been developed over the years and have met with varying success.Cluster hy-
pothesisstates that documents that cluster together (are very similar to each other) will have a similar relevance
profile for a given query. [10] Document clustering techniques were (and still are) an active area of research.
Even though the usefulness of document clustering for improved search effectiveness (or efficiency) has been
very limited, document clustering has allowed several developments in IR, e.g., for browsing and search inter-
faces.Natural Language Processing(NLP) has also been proposed as a tool to enhance retrieval effectiveness,
but has had very limited success. [31] Even though document ranking is a critical application for IR, it is defi-
nitely not the only one. The field has developed techniques to attack many different problems like information
filtering [2], topic detection and tracking (or TDT) [1], speech retrieval [13], cross-language retrieval [9], ques-
tion answering [19], and many more.

6 Summing Up

The field of information retrieval has come a long way in the last forty years, and has enabled easier and faster
information discovery. In the early years there were many doubts raised regarding the simple statistical tech-
niques used in the field. However, for the task of finding information, these statistical techniques have indeed
proven to be the most effective ones so far. Techniques developed in the field have been used in many other
areas and have yielded many new technologies which are used by people on an everyday basis, e.g., web search
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engines, junk-email filters, news clipping services. Going forward, the field is attacking many critical prob-
lems that users face in todays information-ridden world. With exponential growth in the amount of information
available, information retrieval will play an increasingly important role in future.
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Abstract

Most current information management systems can be classified into text retrieval systems, relational/object
database systems, or semistructured/XML database systems. However, in practice, many applications
data sets involve a combination of free text, structured data, and semistructured data. Hence, integration
of different types of information management systems has been, and continues to be, an active research
topic. In this paper, we present a short survey of prior work on integrating and inter-operating between
text, structured, and semistructured database systems. We classify existing literature based on the kinds
of systems being integrated and the approach to integration. Based on this classification, we identify the
challenges and the key themes underlying existing work in this area.

1 Introduction

Most information management systems (IMS) can usually be classified into one of three categories depending
on the kind of data that they are primarily designed to handle.1 Text retrieval systems are concerned with
the management and query-based retrieval of collections of unstructured text documents. Relational or object-
oriented database systems are concerned with the management of structured or strictly-typed data, i.e., data that
conforms to a well-defined schema. Finally, semistructured databases are designed to efficiently manage data
that only partially conforms to a schema, or whose schema can evolve rapidly [1]. Each of these systems employ
different physical and logical data models, query languages, and query processing techniques appropriate to the
type of data being managed (see Table 1 for a brief summary).

There is a substantial body of work that deals with the design of each of these classes of information man-
agement systems. In addition, there has been significant interest in combining, integrating, and inter-operating
between information management systems that belong to different classes. There are two primary motivations
for most of the work in this area. First, many applications require processing of data that belongs to more than
one type. For instance, a medical information system at a hospital must process doctor reports (free text docu-
ments) as well as patient records (structured relational data). Similarly, an order processing application might

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1For the purposes of this paper, we will be ignoring non-text (audio, images, and video) information management systems as well as
systems that are designed for specialized data types (e.g., geographical information systems).
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Text Retrieval Systems Relational & Object DBMS Semistructured (XML) DBMS

Data Models
Unstructured text documents
possibly with structured fields

Relations, Objects grouped into
classes

Directed edge-labeled graphs

Query Models
Extended boolean, Vector

space, Probabilistic Relational model
Relational model extended
with graph operations and

recursion

Query Operators
Boolean operators, Proximity
operators, Pattern matching

operators
Relational operators

Relational operators +
(extended) path expressions +

restructuring operators

Example Query
Languages

Boolean, Natural language [5] SQL, OQL Lorel[2], UnQL [8]

Table 1: Comparing different information management systems based on data and query models2

need to handle inventory information in a relational database as well as purchase orders received as (semistruc-
tured) XML documents. Second, there are significant advantages in leveraging the facilities provided by one
type of information management system to implement another. For instance, a text retrieval system that is built
on top of a relational or object database system [7, 38] can benefit from the sophisticated concurrency control
and recovery facilities of the latter, without having to implement these features from scratch.

However, fundamental differences in the data and query models of these systems, pose significant challenges
to such integration efforts. Depending on the target application scenario, there are several ways of addressing
these challenges. For instance, some integration approaches are based onextendingone type of system, either
natively or through the use of plugin modules [19, 18], to support operators, features, or data types normally
found in another (e.g., support for keyword searches in a semistructured database system [36]). Other approaches
employ a separatemiddlewarelayer that provides a uniform and common query interface to a collection of
diverse information management systems (e.g., the Garlic system [9] at IBM Almaden).

In this paper, we present a short survey of some of the techniques for integrating different classes of infor-
mation management systems. We present a classification system that enables us to group related work, based
on the types of systems being integrated and the integration architecture. We emphasize that our survey is by
no means comprehensive, nor is our classification the only way to organize the literature. Our aim is to use the
classification to identify key integration challenges and describe some of the proposed solutions.

The rest of the paper is organized as follows. In Section 2, we describe our classification system. In Sec-
tions 3, 4, and 5, for each of the three possible pairs of information management systems, we identify the key
issues in integration and briefly discuss some representative work from the literature. We conclude in Section 6.

2 Classification System

We classify existing integration literature along two axes, as shown in Table 2. The horizontal axis of Table 2
enumerates all possible pairs from among the three classes of information management systems (IMS) described
earlier. The vertical axis lists the three most commonly employed architectures for tying such systems together.
The cells of the table are populated with bibliographic references that indicate how each of the referenced works
fit into our classification system.

The schematics in Figure 1 illustrate the differences between the three integration architectures. In systems
with a layeredarchitecture, an IMS of one type is implemented as an application that operates over an IMS

2Note that the entries in this table represent only the most common cases. Individual systems might use some variations or extensions
of these models and languages.
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Figure 1: Common integration architectures

Layering
[6][16][41][46][7][21]

[38][39][52][20]
[42]

[24][51][54][13]
[30][49][28]

Loose Coupling
[40][56][9][11][12][26][27][17] [3] [45][14]

Extension
[44][32][34][19][18][35][21][23]

[53][47][22][57][48][55][37]
[35][33][31][25]

[4][36]
[29][15][50][43][10]

Text Retrieval
Relational/OO

Text Retrieval
Semistructured

Relational/OO
Semistructured

Table 2: Classification of literature on integrating different types of information management systems

of another type. The main advantage of this approach is that the top-level IMS can leverage the facilities of
the underlying IMS (e.g., concurrency control, recovery, caching, index structures, etc.), without significant
additional development time and effort. However, the challenge lies in efficiently mapping the data types and
operators used by the top-level IMS in terms of the types and operators supported by the underlying IMS.

Loosely coupledarchitectures isolate the integration logic in a separate integration (or mediation) layer
(Figure 1(b)). This layer provides a unified access interface to the integrated system using its own data and query
languages. The fundamental challenge in this architecture is to design efficient mechanisms to translate queries
expressed in the unified model in terms of the query capabilities of the individual IMSs. The advantage is that
unlike the other two architectures, modifications to the individual IMSs are minimal or completely unnecessary.

Finally, extensionarchitectures (Figure 1(c)) enhance the capabilities of a particular type of IMS by using
an extension module that provides support for new data types, operators, or query languages usually available
only in IMSs of another type. When extension interfaces are available in the original IMS (as is the case with
most commercial relational systems [19, 18]), the extension module can be implemented using these interfaces.
Otherwise, the original IMS is modified to natively support the new features.

Note that even though we have explicitly distinguished between these three architectures to help navigate the
literature, actual implementations sometimes have flavors of more than one architecture. For instance, reference
[21] proposesextensionsto a relational DBMS to facilitate efficient implementations of inverted indexes and
then layersa text retrieval system atop the enhanced RDBMS. Similarly, for efficiency reasons, some systems
push the integration layer of theloosely coupledarchitecture into one of the individual systems [37].
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3 Text Retrieval and Relational/Object Database Systems

The integration of information retrieval (IR) and traditional database systems has long been recognized as a
challenging and difficult task. Fundamental differences in the query and retrieval models (precisely defined
declarative queries and exact answers in databases versus imprecise queries and approximate retrieval in IR sys-
tems) have resulted in vastly different query languages, index structures, storage formats, and query processing
techniques. Both the IR and DB communities have attempted to address this problem, but with different goals,
and by adopting different architectures. The database community has favored theextensionarchitecture with
the aim of efficiently providing IR features within the DBMS framework (lower left cell of Table 2). In con-
trast, the IR community has shown a preference for thelayeredarchitecture, with the aim of exploiting DBMS
features (concurrency control, recovery, security, transaction semantics, robustness, etc.) to build more scalable
and robust text retrieval systems (top left cell of Table 2). Though less popular, there has also been some work in
building loosely coupled IR-DB systems [17]. In the interest of space, we do not discuss such loosely-coupled
systems in this section.

3.1 Extensions to Database Systems

The extension-based approach of the DB community has led to work on extended relational models and algebras,
extensions to database query languages, new index structures [44] and data types [53], and query execution
strategies for optimizing IR-style text operations.

Extensions to the relational model fall into two categories - nested (non-first normal form orNF 2) relational
models [22, 48, 47, 57] to capture hierarchical document structure and probabilistic models [32, 34] to incorpo-
rate uncertainty and imprecision into the DBMS framework. Such probabilistic extensions, though promising,
require substantial changes to the core query processing algorithms of database systems and as a result, are not
yet a part of actual implementations.

Reference [21] proposes the technique of cooperative indexing, where the database is responsible for inverted
index storage and access but the IR extension defines the actual contents of the index. References [37] and
[23] address performance issues in implementing database extensions - specifically, extensions to integrate with
external (i.e., outside the database system) text retrieval systems. The SQL/MM Full-Text [53] standard attempts
to standardize the integration of text retrieval with SQL database systems by providing definitions for text-related
abstract data types. Finally, in [35], Goldman et al. propose an extension to relational and object databases by
introducing a proximity operator, called the NEAR operator, adapted from the notion of textual proximity used
in text retrieval systems.

3.2 Layering IR Systems atop Relational/Object Database Systems

Some of the earliest attempts at integrating IR and DB systems treated a text retrieval system as a database
application that was implemented on top of a standard relational DBMS [6, 16, 41, 46, 39, 38]. The inverted
index, the lexicon, and other term frequency statistics were stored in standard database tables. IR queries were
translated into SQL queries over these tables and executed by the database. In addition, several prototype text
retrieval systems have also been built using object database systems [7, 20, 52]. Since the object data model
natively supports nesting, in addition to collection types and sets, we expect that systems for content-based
retrieval of structured documents could be effectively implemented on top of OODB systems.

4 Text Retrieval and Semistructured Database Systems

XML has emerged as the de facto standard for representing semistructured information and for exchanging
structured data between applications. Since XML shares the same graph-based data model as several other
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semistructured database query languages [2, 8], to date, most of the work on querying, indexing, and searching
XML corpora has its origins in the database community (see Section 5). In [33], Fuhr and Grossjohann refer to
this approach as thedata-centricview of XML.

However, the alternativedocument-centric[33] view has only recently received the attention of the research
community. This approach treats an XML corpus as a collection of logically structured text documents. By
extending IR models and indexes to encode the structure and semantics of XML documents, it becomes pos-
sible to apply well-known IR techniques and support keyword searches, similarity-based retrieval, automatic
classification, and clustering, of XML corpora.

In [31], the authors describe an approach for integrating keyword searches with XML query processing.
They extend the XML-QL query language by introducing a new “contains” predicate for keyword-based search
operations. They define the precise semantics of the extended query language and describe how to efficiently
execute queries that involve keyword search as well as non-text operations. In the same vein, reference [33]
describes XIRQL, an extension to the XQL query language to support IR-related features such as weighting,
ranking, relevance-oriented search, and vague predicates. The Xyleme warehousing system [4] supports text
search and pattern matching operations over XML documents.

As is evident from the descriptions in the previous paragraph, much of the work in XML-IR integration is
based on theextensionapproach (Figure 1(c)), adding IR-style features to XML databases and query languages.
As an example of alayeredsystem, in [42], Hayashi et al. describe their implementation of a relevance ranking
based XML search engine on top of a standard text retrieval system. Finally, in [3], Adar describes a personal
information management system that is implemented by loosely coupling the Lore semistructured database
system with the Haystack personal information retrieval system.

5 Relational/Object and Semistructured Database Systems

With the advent of XML as the dominant standard for information interchange, the integration of XML with
relational and object database systems is an extremely active research area. Techniques for mapping the XML
(semistructured) data model to the relational or object data model, for exporting relational data as XML docu-
ments, for providing XML views of relational data, and for extending relational query engines to process queries
over XML data, are topics currently being investigated by the research community.

In the commercial arena, most major relational database vendors already provide support for an XML data
type to natively store and manage XML documents, as well as some primitive programming APIs for importing
and exporting XML documents to and from database tables [15].

In the interest of space, for the rest of the section, we shall discuss only extension and layered approaches
to integrating relational/object and semistructured database systems. However, there has been some work in
loosely coupling such systems [45, 14], motivated mainly by the use of XML as the integration language.

5.1 Extensions to Relational/Object Database Systems

Since XML is intended as a language for inter-enterprise information interchange, it is natural that techniques
for publishing relational data as XML documents are in great demand. Several commercial tools already provide
this functionality, but with some limitations. For instance, Oracle’s XSQL [15] tool generates a fixed canonical
mapping of the relational data into XML documents, by mapping each relation and attribute to an XML element,
and nesting tuple elements within table elements. However, it is incapable of mapping to arbitrary XML DTDs.
IBM’s DB2 XML Extender supports a language for composing relational data into arbitrary XML as well as to
decompose XML documents into relations.

In general, there are two parts to designing a system for publishing relations as XML documents. The first
is the need for a language to specify the conversion/mapping from relations to XML documents. The second

48



is an efficient implementation strategy to actually carry out the conversion. The SilkRoute system described
in [29] was one of the earliest research prototypes that supported automatic XML generation from relational
tables. SilkRoute used a language called RXL, based on a combination of SQL and XML query languages, for
specifying mappings of relational tables to arbitrary XML DTDs. Using this language, it is possible to define
XML views of the relational data. SilkRoute efficiently executes queries over these XML views by materializing
only the portion of the XML that is required to answer the query. In [50], Shanmugasundaram et al. propose
a simple language based on SQL with minor extensions for specifying the mappings. They compare different
implementation alternatives and report significant performance gains from constructing XML documents as
much as possible inside the relational engine.

In [43], the authors describe Ozone, an extension of an object database system to handle both structured
and semistructured data. The authors extend the standard ODMG object model and the OQL query language, to
handle semistructured data based on the OEM data model and Lorel query language [2].

5.2 Layering Semistructured Database Systems atop Relational/Object Database Systems

To design a database-backed XML repository, one must precisely define (i) a mapping from XML documents to
tables or objects, (ii) an algorithm for translating queries over XML documents into SQL or OQL queries over
the underlying database, and (iii) a mechanism for translating the result of database query execution into XML.
There are several proposals for implementing XML repositories on top of relational [24, 30, 49, 51] and object
[54, 13, 28] database systems, differing in their choices for (i),(ii), and (iii).

There are three basic alternatives for mapping XML documents into relational tables. The simplest, and least
useful mapping, is to store an entire XML document as asingle database attribute. Another possibility is to
interpret XML documents asgraph structuresand supply a relational schema that can store such graphs [30, 49].
A third approach is to map thestructureof the XML documents, (e.g., expressed as a DTD) into a corresponding
relational schema and to store the documents based on these mappings [51, 24]. Only the last approach allows
the repository to fully exploit the query processing and optimization capabilities of the underlying database
system.

The STORED system described in [24] uses data mining to separate XML documents into structured and
semistructured components. The structured component is stored in a relational database and the semistructured
component is stored in a separate overflow semistructured database. In contrast, Shanmugasundaram et al. [51]
store the repository entirely within the relational database. They assume that the input XML has an associated
DTD and also impose restrictions on the set of DTDs that they can handle.

Techniques for mapping XML documents into object databases tend to be considerably simpler, because
the object model naturally supports a hierarchical structure, collection types, and structured types such as sets
and lists. Usually, a straightforward analysis of the DTD can be used to generate object type definitions (for
example, in ODL) and IDREFs and IDs in the XML document can be mapped to object references and object
IDs in the database system [54, 13]. However, there are two key challenges that need to be addressed. First
is the fact that OODB systems are generally strongly typed whereas XML, being semistructured, is not. As a
result, most often, the object model of the database must be extended, before it can be used for implementing
the XML repository. Second, many OODB systems support only simple path expressions whereas most XML
query languages include regular path expressions. References [54, 13, 28] address some of these challenges.

6 Conclusions

The design of integrated information management systems that can seamlessly handle unstructured, structured,
and semistructured data, is a topic with significant research and commercial interest. In this paper, we presented
a short survey of prior work on designing such integrated systems.
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A visual inspection of Table 2 allows us to draw some conclusions about major research themes and focus
areas. For instance, it is clear that so far, a significant portion of work on integrated information systems has
involved layering other systems atop relational/object databases and on extending the capabilities of the latter
(four corner cells of Table 2). However, we expect that with recent interest in middleware integration, loosely
coupled systems will receive a lot of research attention in the future. Also, as mentioned in Section 4, integration
of semistructured data in general, and XML in particular, with the relational/object database world has received a
lot more attention than corresponding integration with text retrieval systems (comparing two rightmost columns
of Table 2). We believe that this will change, once efforts to incorporate IR-style operators and structured text
retrieval models into XML query languages, bear fruit.

In this paper, we have concentrated mainly on integration of pairs of systems. However, the Web provides us
with a large and interesting data set that shares characteristics with all three types of data that we have dealt with
in this paper. For instance, a repository of Web pages could be treated as a large collection of text documents.
It could also be treated as a huge graph database since Web pages link to each other through hypertext links.
Finally, each page in a Web repository can be associated with simple attributes (e.g., URL, page length, domain
name, crawl date, etc.) that are easily managed in a relational database. Hence, complex queries over such
repositories are likely to involve search terms connected by Boolean operators, navigational operators to refer to
pages based on their interconnections, as well as predicates on page attributes. We believe that a query processing
architecture that can efficiently execute such queries over huge Web repositories is an exciting research topic
with applications in Web search and mining.
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